ICAE and Department of Economic Analysis, Universidad Complutense de Madrid, 28223 Madrid, Spain.
APSL S.L, Edifici Europa-Planta baja Galileo Galilei, Parc Bit, 07121 Palma de Mallorca, Spain.
Chaos. 2020 Aug;30(8):083125. doi: 10.1063/5.0006908.
Anticoordination and chimera states occur in a two-layer model of learning and coordination dynamics in fully connected networks. Learning occurs in the intra-layer networks, while a coordination game is played in the inter-layer network. In this paper, we study the robustness of these states against local effects introduced by the local connectivity of random networks. We identify threshold values for the mean degree of the networks such that below these values, local effects prevent the existence of anticoordination and chimera states found in the fully connected setting. Local effects in the intra-layer learning network are more important than in the inter-layer network in preventing the existence of anticoordination states. The local connectivity of the intra- and inter-layer networks is important to avoid the occurrence of chimera states, but the local effects are stronger in the inter-layer coordination network than in the intra-layer learning network. We also study the effect of local connectivity on the problem of equilibrium selection in the asymmetric coordination game, showing that local effects favor the selection of the Pareto-dominant equilibrium in situations in which the risk-dominant equilibrium is selected in the fully connected network. In this case, again, the important local effects are those associated with the coordination dynamics inter-layer network. Indeed, lower average degree of the network connectivity between layers reduces the probability of achieving the risk-dominant strategy, favoring the Pareto-dominant equilibrium.
抗协调和嵌合体状态出现在完全连接网络的学习和协调动力学的两层模型中。学习发生在内部层网络中,而协调博弈则在外部层网络中进行。在本文中,我们研究了这些状态对随机网络局部连接引入的局部效应的鲁棒性。我们确定了网络平均度数的阈值,低于这些值,局部效应会阻止在完全连接设置中发现的抗协调和嵌合体状态的存在。在阻止抗协调状态存在方面,内部层学习网络中的局部效应比外部层网络中的更为重要。内部层和外部层网络的局部连接对于避免嵌合体状态的发生很重要,但在外部层协调网络中的局部效应比内部层学习网络中的更强。我们还研究了局部连接对非对称协调博弈中均衡选择问题的影响,表明在完全连接网络中选择风险主导均衡的情况下,局部效应有利于选择帕累托主导均衡。在这种情况下,再次是与协调动力学外部层网络相关的重要局部效应。实际上,网络连接的平均程度降低会降低实现风险主导策略的概率,有利于帕累托主导均衡。