Suppr超能文献

具有缓慢适应性反馈的随机可激发系统动力学

Dynamics of a stochastic excitable system with slowly adapting feedback.

作者信息

Franović Igor, Yanchuk Serhiy, Eydam Sebastian, Bačić Iva, Wolfrum Matthias

机构信息

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia.

Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany.

出版信息

Chaos. 2020 Aug;30(8):083109. doi: 10.1063/1.5145176.

Abstract

We study an excitable active rotator with slowly adapting nonlinear feedback and noise. Depending on the adaptation and the noise level, this system may display noise-induced spiking, noise-perturbed oscillations, or stochastic bursting. We show how the system exhibits transitions between these dynamical regimes, as well as how one can enhance or suppress the coherence resonance or effectively control the features of the stochastic bursting. The setup can be considered a paradigmatic model for a neuron with a slow recovery variable or, more generally, as an excitable system under the influence of a nonlinear control mechanism. We employ a multiple timescale approach that combines the classical adiabatic elimination with averaging of rapid oscillations and stochastic averaging of noise-induced fluctuations by a corresponding stationary Fokker-Planck equation. This allows us to perform a numerical bifurcation analysis of a reduced slow system and to determine the parameter regions associated with different types of dynamics. In particular, we demonstrate the existence of a region of bistability, where the noise-induced switching between a stationary and an oscillatory regime gives rise to stochastic bursting.

摘要

我们研究了一个具有缓慢适应性非线性反馈和噪声的可激发主动旋转器。根据适应性和噪声水平,该系统可能会表现出噪声诱导的尖峰、噪声扰动的振荡或随机爆发。我们展示了系统如何在这些动力学状态之间转换,以及如何增强或抑制相干共振,或有效控制随机爆发的特征。该设置可被视为具有缓慢恢复变量的神经元的范例模型,或者更一般地说,是受非线性控制机制影响的可激发系统。我们采用多时间尺度方法,将经典的绝热消除与快速振荡的平均以及通过相应的平稳福克 - 普朗克方程对噪声诱导波动的随机平均相结合。这使我们能够对简化的慢系统进行数值分岔分析,并确定与不同类型动力学相关的参数区域。特别是,我们证明了双稳区域的存在,在该区域中,静止状态和振荡状态之间的噪声诱导切换会导致随机爆发。

相似文献

1
Dynamics of a stochastic excitable system with slowly adapting feedback.
Chaos. 2020 Aug;30(8):083109. doi: 10.1063/1.5145176.
2
Two paradigmatic scenarios for inverse stochastic resonance.
Chaos. 2020 Mar;30(3):033123. doi: 10.1063/1.5139628.
3
4
Canard-induced complex oscillations in an excitatory network.
J Math Biol. 2020 Jun;80(7):2075-2107. doi: 10.1007/s00285-020-01490-1. Epub 2020 Apr 7.
5
Fokker-Planck analysis of stochastic coherence in models of an excitable neuron with noise in both fast and slow dynamics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 1):031112. doi: 10.1103/PhysRevE.72.031112. Epub 2005 Sep 29.
6
Temperature-driven coherence resonance and stochastic resonance in a thermochemical system.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022916. doi: 10.1103/PhysRevE.89.022916. Epub 2014 Feb 18.
7
Noise-induced spiking-bursting transition in the neuron model with the blue sky catastrophe.
Phys Rev E. 2019 Jun;99(6-1):062408. doi: 10.1103/PhysRevE.99.062408.
8
Stochastic dynamo model for subcritical transition.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066307. doi: 10.1103/PhysRevE.73.066307. Epub 2006 Jun 22.
9
Noise-controlled oscillations and their bifurcations in coupled phase oscillators.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Dec;68(6 Pt 2):066206. doi: 10.1103/PhysRevE.68.066206. Epub 2003 Dec 23.
10
State-dependent effects of Na channel noise on neuronal burst generation.
J Comput Neurosci. 2004 Mar-Apr;16(2):87-112. doi: 10.1023/B:JCNS.0000014104.08299.8b.

引用本文的文献

1
Collective Activity Bursting in a Population of Excitable Units Adaptively Coupled to a Pool of Resources.
Front Netw Physiol. 2022 Mar 28;2:841829. doi: 10.3389/fnetp.2022.841829. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验