Suppr超能文献

Requirements for a 4ω Thomson scattering system on megajoule scale laser facilities.

作者信息

Depierreux S, Tassin V, Neuville C, Katz J

机构信息

CEA, DAM, DIF, F-91297 Arpajon, France.

Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299, USA.

出版信息

Rev Sci Instrum. 2020 Aug 1;91(8):083508. doi: 10.1063/5.0008740.

Abstract

With the arrival of megajoule class laser facilities, the features of laser-produced plasmas are evolving toward unprecedented high electron temperatures reached in the environment of a cm-scale indirect-drive Hohlraum for a few tens of nanoseconds. In this context, the need for in situ experimental characterization of the plasma parameters becomes critical in order to test hydrodynamics simulations in these novel conditions. Taking advantage of the progress achieved in the last 40 years, Thomson scattering has become a classic diagnostic in the characterization of laser produced plasmas. However, the many beam configuration of the megajoule scale experiments makes the measurements increasingly complex because the Thomson scattering signals produced by the 351 nm heaters themselves dominate the plasma emission around 263 nm, a wavelength range typically of interest when a 4ω Thomson probe is used. This paper reviews the requirements for and the potential of a 4ω Thomson scattering system to be operated on such 351 nm megajoule scale facilities in order to characterize the hot (T > 3 keV) plasmas produced in the indirect-drive irradiation of a Hohlraum. It is found that the configuration of the diagnostic could be optimized in order to enable the detection of the ion acoustic resonances over a large domain of plasma parameters. The results for the electron plasma wave resonances are also given.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验