Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.
Laboratory of Cell and Molecular Bioengineering, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, 464-8601, Japan.
Sci Rep. 2020 Sep 1;10(1):14387. doi: 10.1038/s41598-020-70979-y.
Transplantation of retinal pigment epithelial (RPE) sheets derived from human induced pluripotent cells (hiPSC) is a promising cell therapy for RPE degeneration, such as in age-related macular degeneration. Current RPE replacement therapies, however, face major challenges. They require a tedious manual process of selecting differentiated RPE from hiPSC-derived cells, and despite wide variation in quality of RPE sheets, there exists no efficient process for distinguishing functional RPE sheets from those unsuitable for transplantation. To overcome these issues, we developed methods for the generation of RPE sheets from hiPSC, and image-based evaluation. We found that stepwise treatment with six signaling pathway inhibitors along with nicotinamide increased RPE differentiation efficiency (RPE6iN), enabling the RPE sheet generation at high purity without manual selection. Machine learning models were developed based on cellular morphological features of F-actin-labeled RPE images for predicting transepithelial electrical resistance values, an indicator of RPE sheet function. Our model was effective at identifying low-quality RPE sheets for elimination, even when using label-free images. The RPE6iN-based RPE sheet generation combined with the non-destructive image-based prediction offers a comprehensive new solution for the large-scale production of pure RPE sheets with lot-to-lot variations and should facilitate the further development of RPE replacement therapies.
从人诱导多能干细胞(hiPSC)衍生的视网膜色素上皮(RPE)片的移植是一种很有前途的 RPE 变性细胞治疗方法,例如年龄相关性黄斑变性。然而,目前的 RPE 替代疗法面临着重大挑战。它们需要从 hiPSC 衍生细胞中繁琐的手动选择分化的 RPE,尽管 RPE 片的质量存在广泛差异,但不存在有效区分适用于移植的功能性 RPE 片与不适宜移植的 RPE 片的方法。为了克服这些问题,我们开发了从 hiPSC 生成 RPE 片的方法和基于图像的评估方法。我们发现,用六种信号通路抑制剂与烟酰胺分步处理可提高 RPE 分化效率(RPE6iN),从而在无需手动选择的情况下以高纯度生成 RPE 片。基于 F-肌动蛋白标记的 RPE 图像的细胞形态特征开发了机器学习模型,用于预测 RPE 片功能的跨上皮电阻值。即使使用无标签图像,我们的模型也能有效地识别低质量的 RPE 片以进行剔除。基于 RPE6iN 的 RPE 片生成与无损基于图像的预测相结合,为具有批次间差异的大量 RPE 片的大规模生产提供了一种全面的新解决方案,应有助于进一步开发 RPE 替代疗法。