Suppr超能文献

使用图像归一化的深度神经网络的可推广多站点训练与测试

GENERALIZABLE MULTI-SITE TRAINING AND TESTING OF DEEP NEURAL NETWORKS USING IMAGE NORMALIZATION.

作者信息

Onofrey John A, Casetti-Dinescu Dana I, Lauritzen Andreas D, Sarkar Saradwata, Venkataraman Rajesh, Fan Richard E, Sonn Geoffrey A, Sprenkle Preston C, Staib Lawrence H, Papademetris Xenophon

机构信息

Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA.

Eigen, Grass Valley, CA, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2019 Apr;2019:348-351. doi: 10.1109/isbi.2019.8759295. Epub 2019 Jul 11.

Abstract

The ability of medical image analysis deep learning algorithms to generalize across multiple sites is critical for clinical adoption of these methods. Medical imging data, especially MRI, can have highly variable intensity characteristics across different individuals, scanners, and sites. However, it is not practical to train algorithms with data from all imaging equipment sources at all possible sites. Intensity normalization methods offer a potential solution for working with multi-site data. We evaluate five different image normalization methods on training a deep neural network to segment the prostate gland in MRI. Using 600 MRI prostate gland segmentations from two different sites, our results show that both intra-site and inter-site evaluation is critical for assessing the robustness of trained models and that training with single-site data produces models that fail to fully generalize across testing data from sites not included in the training.

摘要

医学图像分析深度学习算法在多个站点间进行泛化的能力对于这些方法在临床中的应用至关重要。医学成像数据,尤其是MRI数据,在不同个体、扫描仪和站点之间可能具有高度可变的强度特征。然而,使用来自所有可能站点的所有成像设备源的数据来训练算法是不切实际的。强度归一化方法为处理多站点数据提供了一种潜在的解决方案。我们评估了五种不同的图像归一化方法在训练深度神经网络以分割MRI中的前列腺时的效果。使用来自两个不同站点的600个MRI前列腺分割数据,我们的结果表明,站点内和站点间评估对于评估训练模型的稳健性都至关重要,并且使用单站点数据进行训练会产生无法在来自训练中未包含站点的测试数据上完全泛化的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验