Chen Chen, Bai Wenjia, Davies Rhodri H, Bhuva Anish N, Manisty Charlotte H, Augusto Joao B, Moon James C, Aung Nay, Lee Aaron M, Sanghvi Mihir M, Fung Kenneth, Paiva Jose Miguel, Petersen Steffen E, Lukaschuk Elena, Piechnik Stefan K, Neubauer Stefan, Rueckert Daniel
Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom.
Data Science Institute, Imperial College London, London, United Kingdom.
Front Cardiovasc Med. 2020 Jun 30;7:105. doi: 10.3389/fcvm.2020.00105. eCollection 2020.
Convolutional neural network (CNN) based segmentation methods provide an efficient and automated way for clinicians to assess the structure and function of the heart in cardiac MR images. While CNNs can generally perform the segmentation tasks with high accuracy when training and test images come from the same domain (e.g., same scanner or site), their performance often degrades dramatically on images from different scanners or clinical sites. We propose a simple yet effective way for improving the network generalization ability by carefully designing data normalization and augmentation strategies to accommodate common scenarios in multi-site, multi-scanner clinical imaging data sets. We demonstrate that a neural network trained on a single-site single-scanner dataset from the UK Biobank can be successfully applied to segmenting cardiac MR images across different sites and different scanners without substantial loss of accuracy. Specifically, the method was trained on a large set of 3,975 subjects from the UK Biobank. It was then directly tested on 600 different subjects from the UK Biobank for intra-domain testing and two other sets for cross-domain testing: the ACDC dataset (100 subjects, 1 site, 2 scanners) and the BSCMR-AS dataset (599 subjects, 6 sites, 9 scanners). The proposed method produces promising segmentation results on the UK Biobank test set which are comparable to previously reported values in the literature, while also performing well on cross-domain test sets, achieving a mean Dice metric of 0.90 for the left ventricle, 0.81 for the myocardium, and 0.82 for the right ventricle on the ACDC dataset; and 0.89 for the left ventricle, 0.83 for the myocardium on the BSCMR-AS dataset. The proposed method offers a potential solution to improve CNN-based model generalizability for the cross-scanner and cross-site cardiac MR image segmentation task.
基于卷积神经网络(CNN)的分割方法为临床医生评估心脏磁共振成像(MRI)中心脏的结构和功能提供了一种高效且自动化的方式。虽然当训练图像和测试图像来自同一领域(例如,同一扫描仪或站点)时,CNN通常能够高精度地执行分割任务,但它们在来自不同扫描仪或临床站点的图像上的性能往往会大幅下降。我们提出了一种简单而有效的方法,通过精心设计数据归一化和增强策略来提高网络的泛化能力,以适应多站点、多扫描仪临床成像数据集中的常见情况。我们证明,在来自英国生物银行的单站点单扫描仪数据集上训练的神经网络可以成功应用于跨不同站点和不同扫描仪的心脏MRI图像分割,而不会大幅损失准确性。具体而言,该方法在来自英国生物银行的3975名受试者的大量数据集上进行训练。然后,它直接在来自英国生物银行的600名不同受试者上进行域内测试,并在另外两个数据集上进行跨域测试:ACDC数据集(100名受试者,1个站点,2台扫描仪)和BSCMR-AS数据集(599名受试者,6个站点,9台扫描仪)。所提出的方法在英国生物银行测试集上产生了有前景的分割结果,与文献中先前报道的值相当,同时在跨域测试集上也表现良好,在ACDC数据集上左心室的平均Dice系数为0.90,心肌为0.81,右心室为0.82;在BSCMR-AS数据集上左心室为0.89,心肌为0.83。所提出的方法为提高基于CNN的模型在跨扫描仪和跨站点心脏MRI图像分割任务中的泛化能力提供了一种潜在的解决方案。