Suppr超能文献

朱诺号对木星磁尾瞬态偶极化期间重离子加速的观测。

Juno Observations of Heavy Ion Energization During Transient Dipolarizations in Jupiter Magnetotail.

作者信息

Artemyev A V, Clark G, Mauk B, Vogt M F, Zhang X-J

机构信息

Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA, USA.

Space Research Institute of Russian Academy of Sciences, Moscow, Russia.

出版信息

J Geophys Res Space Phys. 2020 May;125(5). doi: 10.1029/2020ja027933. Epub 2020 May 7.

Abstract

Transient magnetic reconnection and associated fast plasma flows led by dipolarization fronts play a crucial role in energetic particle acceleration in planetary magnetospheres. Despite large statistical observations on this phenomenon in the Earth's magnetotail, many important characteristics (e.g., mass or charge dependence of acceleration efficiency and acceleration scaling with the spatial scale of the system) of transient reconnection cannot be fully investigated with the limited parameter range of the Earth's magnetotail. The much larger Jovian magnetodisk, filled by a mixture of various heavy ions and protons, provides a unique opportunity for such investigations. In this study, we use recent Juno observations in Jupiter's magnetosphere to examine the properties of reconnection associated dipolarization fronts and charged particle acceleration. High-energy fluxes of sulfur, oxygen, and hydrogen ions show clear mass-dependent acceleration with energy ~ . We compare Juno observations with similar observations in the Earth's magnetotail and discuss possible mechanism for the observed ion acceleration.

摘要

由偶极化前沿引发的瞬态磁重联及相关的快速等离子体流,在行星磁层的高能粒子加速过程中起着至关重要的作用。尽管对地球磁尾中这一现象已有大量统计观测,但由于地球磁尾参数范围有限,瞬态重联的许多重要特征(例如,加速效率的质量或电荷依赖性以及随系统空间尺度的加速标度关系)无法得到充分研究。由各种重离子和质子混合填充的大得多的木星磁盘,为这类研究提供了独特的机会。在本研究中,我们利用最近朱诺号对木星磁层的观测结果,来研究与重联相关的偶极化前沿的性质以及带电粒子加速情况。硫离子、氧离子和氢离子的高能通量显示出明显的质量依赖性加速,能量约为 。我们将朱诺号的观测结果与地球磁尾的类似观测进行比较,并讨论观测到的离子加速的可能机制。

相似文献

5
Energetic particles in the jovian magnetotail.木星磁尾中的高能粒子。
Science. 2007 Oct 12;318(5848):220-2. doi: 10.1126/science.1148025.
9
Explosive Magnetotail Activity.磁尾爆发活动
Space Sci Rev. 2019;215(4):31. doi: 10.1007/s11214-019-0599-5. Epub 2019 May 16.

本文引用的文献

4
The Space Physics Environment Data Analysis System (SPEDAS).空间物理环境数据分析系统(SPEDAS)。
Space Sci Rev. 2019;215(1):9. doi: 10.1007/s11214-018-0576-4. Epub 2019 Jan 22.
6
Why does Steady-State Magnetic Reconnection have a Maximum Local Rate of Order 0.1?为什么稳态磁重联的最大局部速率约为0.1 ?
Phys Rev Lett. 2017 Feb 24;118(8):085101. doi: 10.1103/PhysRevLett.118.085101. Epub 2017 Feb 21.
9
Electromagnetic energy conversion at reconnection fronts.磁重联前沿的电磁能量转换。
Science. 2013 Sep 27;341(6153):1478-82. doi: 10.1126/science.1236992.
10
Tail reconnection triggering substorm onset.尾部重新连接引发亚暴起始。
Science. 2008 Aug 15;321(5891):931-5. doi: 10.1126/science.1160495. Epub 2008 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验