Suppr超能文献

自动晶体学建模管道的两两运行。

Pairwise running of automated crystallographic model-building pipelines.

机构信息

Department of Computer Science, University of York, Heslington, York YO10 5GH, United Kingdom.

Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom.

出版信息

Acta Crystallogr D Struct Biol. 2020 Sep 1;76(Pt 9):814-823. doi: 10.1107/S2059798320010542. Epub 2020 Aug 19.

Abstract

For the last two decades, researchers have worked independently to automate protein model building, and four widely used software pipelines have been developed for this purpose: ARP/wARP, Buccaneer, Phenix AutoBuild and SHELXE. Here, the usefulness of combining these pipelines to improve the built protein structures by running them in pairwise combinations is examined. The results show that integrating these pipelines can lead to significant improvements in structure completeness and R. In particular, running Phenix AutoBuild after Buccaneer improved structure completeness for 29% and 75% of the data sets that were examined at the original resolution and at a simulated lower resolution, respectively, compared with running Phenix AutoBuild on its own. In contrast, Phenix AutoBuild alone produced better structure completeness than the two pipelines combined for only 7% and 3% of these data sets.

摘要

在过去的二十年中,研究人员一直在独立地开发自动化蛋白质建模,为此已经开发了四个广泛使用的软件管道:ARP/wARP、Buccaneer、Phenix AutoBuild 和 SHELXE。在这里,研究了通过运行这些管道的两两组合来提高构建的蛋白质结构的有用性。结果表明,整合这些管道可以显著提高结构的完整性和 R 值。特别是,与单独运行 Phenix AutoBuild 相比,在原始分辨率和模拟的较低分辨率下,Buccaneer 之后运行 Phenix AutoBuild 分别将 29%和 75%的数据集的结构完整性提高了。相比之下,仅 Phenix AutoBuild 对这些数据集的 7%和 3%的结构完整性就比两个管道的组合更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a178/7466752/2514fe55a562/d-76-00814-fig1.jpg

相似文献

1
Pairwise running of automated crystallographic model-building pipelines.
Acta Crystallogr D Struct Biol. 2020 Sep 1;76(Pt 9):814-823. doi: 10.1107/S2059798320010542. Epub 2020 Aug 19.
2
Comparison of automated crystallographic model-building pipelines.
Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1119-1128. doi: 10.1107/S2059798319014918. Epub 2019 Nov 22.
3
Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard.
Acta Crystallogr D Biol Crystallogr. 2008 Jan;64(Pt 1):61-9. doi: 10.1107/S090744490705024X. Epub 2007 Dec 5.
4
Automated structure solution with the PHENIX suite.
Methods Mol Biol. 2008;426:419-35. doi: 10.1007/978-1-60327-058-8_28.
5
Buccaneer model building with neural network fragment selection.
Acta Crystallogr D Struct Biol. 2023 Apr 1;79(Pt 4):326-338. doi: 10.1107/S205979832300181X. Epub 2023 Mar 28.
6
Predicting the performance of automated crystallographic model-building pipelines.
Acta Crystallogr D Struct Biol. 2021 Dec 1;77(Pt 12):1591-1601. doi: 10.1107/S2059798321010500. Epub 2021 Nov 29.
7
The Phenix-AlphaFold webservice: Enabling AlphaFold predictions for use in Phenix.
Protein Sci. 2024 May;33(5):e4992. doi: 10.1002/pro.4992.
8
An evaluation of automated model-building procedures for protein crystallography.
Acta Crystallogr D Biol Crystallogr. 2003 May;59(Pt 5):823-7. doi: 10.1107/s0907444903003792. Epub 2003 Apr 25.
9
Current approaches for automated model building into cryo-EM maps using Buccaneer with CCP-EM.
Acta Crystallogr D Struct Biol. 2020 Jun 1;76(Pt 6):531-541. doi: 10.1107/S2059798320005513. Epub 2020 May 29.
10
ModelCraft: an advanced automated model-building pipeline using Buccaneer.
Acta Crystallogr D Struct Biol. 2022 Sep 1;78(Pt 9):1090-1098. doi: 10.1107/S2059798322007732. Epub 2022 Aug 25.

引用本文的文献

1
Predicting the performance of automated crystallographic model-building pipelines.
Acta Crystallogr D Struct Biol. 2021 Dec 1;77(Pt 12):1591-1601. doi: 10.1107/S2059798321010500. Epub 2021 Nov 29.
2
Structural barriers to scientific progress.
Acta Crystallogr D Struct Biol. 2020 Oct 1;76(Pt 10):908-911. doi: 10.1107/S2059798320011201. Epub 2020 Sep 22.

本文引用的文献

1
The use of local structural similarity of distant homologues for crystallographic model building from a molecular-replacement solution.
Acta Crystallogr D Struct Biol. 2020 Mar 1;76(Pt 3):248-260. doi: 10.1107/S2059798320000455. Epub 2020 Feb 28.
2
Comparison of automated crystallographic model-building pipelines.
Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1119-1128. doi: 10.1107/S2059798319014918. Epub 2019 Nov 22.
3
An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features.
Acta Crystallogr D Struct Biol. 2018 Feb 1;74(Pt 2):106-116. doi: 10.1107/S2059798317015121.
4
Extending molecular-replacement solutions with SHELXE.
Acta Crystallogr D Biol Crystallogr. 2013 Nov;69(Pt 11):2251-6. doi: 10.1107/S0907444913027534. Epub 2013 Oct 18.
5
Visual automated macromolecular model building.
Acta Crystallogr D Biol Crystallogr. 2013 Apr;69(Pt 4):635-41. doi: 10.1107/S0907444913000565. Epub 2013 Mar 14.
6
Distributed structure determination at the JCSG.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):368-75. doi: 10.1107/S0907444910039934. Epub 2011 Mar 18.
7
REFMAC5 for the refinement of macromolecular crystal structures.
Acta Crystallogr D Biol Crystallogr. 2011 Apr;67(Pt 4):355-67. doi: 10.1107/S0907444911001314. Epub 2011 Mar 18.
8
Experimental phasing with SHELXC/D/E: combining chain tracing with density modification.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):479-85. doi: 10.1107/S0907444909038360. Epub 2010 Mar 24.
9
Recent developments in classical density modification.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):470-8. doi: 10.1107/S090744490903947X. Epub 2010 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验