Suppr超能文献

来自 G7 的新型 1,3-α-3,6-脱水-L-半乳糖苷酶 Ahg943 的分子特征,具有耐冷和耐高盐特性。

Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from G7.

机构信息

Department of Bioscience and Bioinformatics, Yongin 17058, Republic of Korea.

Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea.

出版信息

J Microbiol Biotechnol. 2020 Nov 28;30(11):1659-1669. doi: 10.4014/jmb.2008.08017.

Abstract

1,3-α-3,6-anhydro-L-galactosidase (α-neoagarooligosaccharide hydrolase) catalyzes the last step of agar degradation by hydrolyzing neoagarobiose into monomers, D-galactose, and 3,6-anhydro-Lgalactose, which is important for the bioindustrial application of algal biomass. Ahg943, from the agarolytic marine bacterium G7, is composed of 423 amino acids (47.96 kDa), including a 22-amino acid signal peptide. It was found to have 67% identity with the α-neoagarooligosaccharide hydrolase AhgA, from , but low identity (< 40%) with the other α-neoagarooligosaccharide hydrolases reported. The recombinant Ahg943 (rAhg943, 47.89 kDa), purified from , was estimated to be a monomer upon gel filtration chromatography, making it quite distinct from other α-neoagarooligosaccharide hydrolases. The rAhg943 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into D-galactose, neoagarotriose, and neoagaropentaose, respectively, with a common product, 3,6- anhydro-L-galactose, indicating that it is an exo-acting α-neoagarooligosaccharide hydrolase that releases 3,6-anhydro-L-galactose by hydrolyzing α-1,3 glycosidic bonds from the nonreducing ends of neoagarooligosaccharides. The optimum pH and temperature of Ahg943 activity were 6.0 and 20°C, respectively. In particular, rAhg943 could maintain enzyme activity at 10°C (71% of the maximum). Complete inhibition of rAhg943 activity by 0.5 mM EDTA was restored and even, remarkably, enhanced by Ca ions. rAhg943 activity was at maximum at 0.5 M NaCl and maintained above 73% of the maximum at 3M NaCl. and of rAhg943 toward neoagarobiose were 9.7 mg/ml and 250 μM/min (3 U/mg), respectively. Therefore, Ahg943 is a unique α-neoagarooligosaccharide hydrolase that has cold- and high-salt-adapted features, and possibly exists as a monomer.

摘要

1,3-α-3,6-脱水-L-半乳糖苷酶(α-新琼寡糖水解酶)通过将新琼二糖水解成单体、D-半乳糖和 3,6-脱水-L-半乳糖来催化琼脂降解的最后一步,这对于海藻生物质的生物工业应用非常重要。Ahg943 来自于琼脂分解海洋细菌 G7,由 423 个氨基酸(47.96 kDa)组成,包括一个 22 个氨基酸的信号肽。它与来自 的 α-新琼寡糖水解酶 AhgA 具有 67%的同源性,但与其他报道的 α-新琼寡糖水解酶的同源性较低(<40%)。从 中纯化的重组 Ahg943(rAhg943,47.89 kDa),通过凝胶过滤色谱估计为单体,与其他 α-新琼寡糖水解酶明显不同。rAhg943 水解新琼二糖、新琼四糖和新琼六糖分别生成 D-半乳糖、新琼三糖和新琼五糖,共同产物为 3,6-脱水-L-半乳糖,表明它是一种外切作用的 α-新琼寡糖水解酶,通过水解新琼寡糖的非还原末端的α-1,3 糖苷键释放 3,6-脱水-L-半乳糖。Ahg943 活性的最适 pH 和温度分别为 6.0 和 20°C。特别是,rAhg943 在 10°C 下(最大活性的 71%)仍能保持酶活性。0.5 mM EDTA 完全抑制 rAhg943 活性,但被 Ca 离子恢复,甚至显著增强。rAhg943 在 0.5 M NaCl 中活性最高,在 3 M NaCl 中仍保持最大活性的 73%以上。rAhg943 对新琼二糖的 Km 和 Vmax 分别为 9.7 mg/ml 和 250 μM/min(3 U/mg)。因此,Ahg943 是一种独特的 α-新琼寡糖水解酶,具有耐冷和耐盐的特性,可能以单体形式存在。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c66/9728383/22263065c724/JMB-30-11-1659-f1.jpg

相似文献

2
Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7.
Appl Microbiol Biotechnol. 2018 Oct;102(20):8855-8866. doi: 10.1007/s00253-018-9277-x. Epub 2018 Aug 20.
3
Molecular Cloning and Characterization of a Novel Cold-Adapted Alkaline 1,3-α-3,6-Anhydro-L-galactosidase, Ahg558, from Gayadomonas joobiniege G7.
Appl Biochem Biotechnol. 2019 Aug;188(4):1077-1095. doi: 10.1007/s12010-019-02963-w. Epub 2019 Feb 21.
4
Biochemical characterization of a novel cold-adapted GH39 β-agarase, AgaJ9, from an agar-degrading marine bacterium Gayadomonas joobiniege G7.
Appl Microbiol Biotechnol. 2017 Mar;101(5):1965-1974. doi: 10.1007/s00253-016-7951-4. Epub 2016 Nov 10.
5
Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2).
Appl Microbiol Biotechnol. 2023 Jun;107(12):3997-4008. doi: 10.1007/s00253-023-12552-x. Epub 2023 May 15.
6
Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from G7.
J Microbiol Biotechnol. 2018 Feb 28;28(2):284-292. doi: 10.4014/jmb.1710.10011.
7
Cloning, Expression, and Biochemical Characterization of a Novel Acidic GH16 β-Agarase, AgaJ11, from Gayadomonas joobiniege G7.
Appl Biochem Biotechnol. 2017 Mar;181(3):961-971. doi: 10.1007/s12010-016-2262-x. Epub 2016 Oct 14.
8
Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7.
Appl Biochem Biotechnol. 2019 Sep;189(1):1-12. doi: 10.1007/s12010-019-02992-5. Epub 2019 Mar 11.
9
Purification and characterization of α-neoagarooligosaccharide hydrolase from Cellvibrio sp. OA-2007.
J Microbiol Biotechnol. 2014 Jan;24(1):48-51. doi: 10.4014/jmb.1307.07018.
10
Enzymatic characterization of a novel recombinant 1,3-α-3,6-anhydro-L-galactosidase specific for neoagarobiose hydrolysis into monosaccharides.
Appl Microbiol Biotechnol. 2021 Jun;105(11):4621-4634. doi: 10.1007/s00253-021-11341-8. Epub 2021 May 31.

引用本文的文献

1
Cold-adapted enzymes: mechanisms, engineering and biotechnological application.
Bioprocess Biosyst Eng. 2023 Oct;46(10):1399-1410. doi: 10.1007/s00449-023-02904-2. Epub 2023 Jul 24.
2
Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2).
Appl Microbiol Biotechnol. 2023 Jun;107(12):3997-4008. doi: 10.1007/s00253-023-12552-x. Epub 2023 May 15.

本文引用的文献

1
Implications of agar and agarase in industrial applications of sustainable marine biomass.
Appl Microbiol Biotechnol. 2020 Apr;104(7):2815-2832. doi: 10.1007/s00253-020-10412-6. Epub 2020 Feb 8.
3
Biochemical Characterization of a New β-Agarase from .
Int J Mol Sci. 2019 Apr 30;20(9):2143. doi: 10.3390/ijms20092143.
4
Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel.
J Appl Microbiol. 2019 Jun;126(6):1785-1796. doi: 10.1111/jam.14275. Epub 2019 Apr 29.
5
Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7.
Appl Biochem Biotechnol. 2019 Sep;189(1):1-12. doi: 10.1007/s12010-019-02992-5. Epub 2019 Mar 11.
6
Molecular Cloning and Characterization of a Novel Cold-Adapted Alkaline 1,3-α-3,6-Anhydro-L-galactosidase, Ahg558, from Gayadomonas joobiniege G7.
Appl Biochem Biotechnol. 2019 Aug;188(4):1077-1095. doi: 10.1007/s12010-019-02963-w. Epub 2019 Feb 21.
7
NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning.
Proteins. 2019 Jun;87(6):520-527. doi: 10.1002/prot.25674. Epub 2019 Mar 9.
8
Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7.
Appl Microbiol Biotechnol. 2018 Oct;102(20):8855-8866. doi: 10.1007/s00253-018-9277-x. Epub 2018 Aug 20.
9
Preparation and properties of wet-spun agar fibers.
Carbohydr Polym. 2018 Feb 1;181:760-767. doi: 10.1016/j.carbpol.2017.11.081. Epub 2017 Nov 24.
10
Biochemical Characterization of a Novel GH86 β-Agarase Producing Neoagarohexaose from G7.
J Microbiol Biotechnol. 2018 Feb 28;28(2):284-292. doi: 10.4014/jmb.1710.10011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验