Liu Qian, Zhang Shao-Jian, Xiang Cheng-Cheng, Luo Chen-Xu, Zhang Peng-Fang, Shi Chen-Guang, Zhou Yao, Li Jun-Tao, Huang Ling, Sun Shi-Gang
State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
College of Energy, Xiamen University, Xiamen 361005, P. R. China.
ACS Appl Mater Interfaces. 2020 Sep 30;12(39):43624-43633. doi: 10.1021/acsami.0c10874. Epub 2020 Sep 15.
Cubic N,S codoped carbon coating MnS-FeS composites (MnS-FeS@NSC) with a hollow structure were prepared and used as anode materials for sodium-ion batteries. MnS-FeS@NSC exhibits excellent cycle performance and high rate capability and delivered a reversible capacity of 501.0 mAh g after 800 cycles at a current density of 0.1 A g with a capacity retention of 81%. More importantly, the MnS-FeS@NSC anode holds long-term cycle stability; the capacity can remain 134.0 mAh g after 14 500 cycles at 4 A g. Kinetic analysis demonstrated that Na storage follows a pseudocapacitive dominating process, which is ascribed to the origin of the outstanding rate performance of the MnS-FeS@NSC material. The enhancement of electrochemical performance is attributed to the hollow structure and the N,S codoped carbon coating structure, which can reduce the diffusion distance for sodium ions and electrons, alleviate volume expansion during sodium-ion insertion/extraction, and retain the structural integrity effectively. Furthermore, a two-step sodiation processes with FeS sodiation prior to MnS was demonstrated by X-ray diffraction (XRD), and the electrochemical impedance spectroscopy (EIS) spectra might indicate that the accumulation of the metallic elements in the preconversion reaction can accelerate the transfer of electrons and ions in the further conversion process.
制备了具有中空结构的立方氮、硫共掺杂碳包覆硫化锰-硫化铁复合材料(MnS-FeS@NSC),并将其用作钠离子电池的负极材料。MnS-FeS@NSC表现出优异的循环性能和高倍率性能,在0.1 A g的电流密度下循环800次后,可逆容量为501.0 mAh g,容量保持率为81%。更重要的是,MnS-FeS@NSC负极具有长期的循环稳定性;在4 A g的电流密度下循环14500次后,容量仍可保持在134.0 mAh g。动力学分析表明,钠存储遵循赝电容主导过程,这归因于MnS-FeS@NSC材料优异倍率性能的起源。电化学性能的提高归因于中空结构和氮、硫共掺杂碳包覆结构,它们可以缩短钠离子和电子的扩散距离,减轻钠离子嵌入/脱出过程中的体积膨胀,并有效保持结构完整性。此外,X射线衍射(XRD)表明存在两步 sodiation 过程,其中FeS先于MnS进行 sodiation,电化学阻抗谱(EIS)谱可能表明预转换反应中金属元素的积累可以加速进一步转换过程中电子和离子的转移。