Cao Liang, Gao Xuanwen, Zhang Bao, Ou Xing, Zhang Jiafeng, Luo Wen-Bin
School of Metallurgy and Environment, Central South University, No. 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, No. 11 Lane 3, Wenhua Road, Shenyang, Liaoning 110819, People's Republic of China.
ACS Nano. 2020 Mar 24;14(3):3610-3620. doi: 10.1021/acsnano.0c00020. Epub 2020 Mar 9.
Constructing a heterojunction and introducing an interfacial interaction by designing ideal structures have the inherent advantages of optimizing electronic structures and macroscopic mechanical properties. An exquisite hierarchical heterogeneous structure of bimetal sulfide SbS@FeS hollow nanorods embedded into a nitrogen-doped carbon matrix is fabricated by a concise two-step solvothermal method. The FeS interlayer expands grow on the interface of hollow SbS nanorods within the nitrogen-doped graphene matrix, forming a delicate heterostructure. Such a well-designed architecture affords rapid Na diffusion and improves charge transfer at the heterointerfaces. Meanwhile, the strongly synergistic coupling interaction among the interior SbS, interlayer FeS, and external nitrogen-doped carbon matrix creates a stable nanostructure, which extremely accelerates the electronic/ion transport and effectively alleviates the volume expansion upon long cyclic performance. As a result, the composite, as an anode material for sodium-ion batteries, exhibits a superior rate capability of 537.9 mAh g at 10 A g and excellent cyclic stability with 85.7% capacity retention after 1000 cycles at 5 A g. Based on the DFT calculation, the existing constructing heterojunction in this composite can not only optimize the electronic structure to enhance the conductivity but also favor the NaS adsorption energy to accelerate the reaction kinetics. The outstanding electrochemical performance sheds light on the strategy by the rational design of hierarchical heterogeneous nanostructures for energy storage applications.
通过设计理想结构构建异质结并引入界面相互作用,在优化电子结构和宏观力学性能方面具有内在优势。采用简洁的两步溶剂热法制备了一种嵌入氮掺杂碳基体的双金属硫化物SbS@FeS空心纳米棒的精细分级异质结构。FeS夹层在氮掺杂石墨烯基体内的空心SbS纳米棒界面上扩展生长,形成了精细的异质结构。这种精心设计的结构提供了快速的Na扩散,并改善了异质界面处的电荷转移。同时,内部的SbS、夹层的FeS和外部的氮掺杂碳基体之间强烈的协同耦合相互作用创造了一种稳定的纳米结构,极大地加速了电子/离子传输,并有效缓解了长循环性能下的体积膨胀。因此,该复合材料作为钠离子电池的负极材料,在10 A g下表现出537.9 mAh g的优异倍率性能,在5 A g下循环1000次后容量保持率为85.7%,具有出色的循环稳定性。基于密度泛函理论计算,该复合材料中现有的异质结构建不仅可以优化电子结构以提高导电性,还有利于NaS吸附能以加速反应动力学。这种优异的电化学性能为通过合理设计分级异质纳米结构用于储能应用提供了策略依据。