Suppr超能文献

使用纳米级深度传感方法研究碳纳米纤维增强水泥的纳米结构与断裂行为

Nanostructure and Fracture Behavior of Carbon Nanofiber-Reinforced Cement Using Nanoscale Depth-Sensing Methods.

作者信息

Akono Ange-Therese

机构信息

Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA.

Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA.

出版信息

Materials (Basel). 2020 Aug 31;13(17):3837. doi: 10.3390/ma13173837.

Abstract

In recent years, carbon nanofibers have been investigated as a suitable reinforcement for cementitious composites to yield novel multifunctional materials with improved mechanical, electrical, magnetic, and self-sensing behavior. Despite several studies, the interactions between carbon nanofibers and Portland cement hydration products are not fully understood, with significant implications for the mechanical response and the durability at the macroscopic lengthscale. Thus, the research objective is to investigate the influence of carbon nanofibers on the nanostructure and on the distribution of hydration products within Portland cement paste. Portland cement w/c = 0.44 specimens reinforced with 0.0 wt%, 0.1 wt%, and 0.5 wt% CNF by mass fraction of cement are cast using a novel synthesis procedure. A uniform dispersion of carbon nanofibers (CNF) via a multi-step approach: after pre-dispersing carbon nanofibers using ultrasonic energy, the carbon nanofibers are further dispersed using un-hydrated cement particles in high shear mixing and mechanical stirring steps. High-resolution scanning electron microscopy analysis shows that carbon nanofibers fill nanopores and connect calcium-silicate hydrates (C-S-H) grains. Grid nano-indentation testing shows that Carbon nanofibers influence the probability distribution function of the local packing density by inducing a shift towards higher values, η = 0.76-0.93. Statistical deconvolution analysis shows that carbon nanofibers result in an increase in the fraction of high-density C-S-H by 6.7% from plain cement to cement + 0.1 wt% CNF and by 10.7% from plain cement to cement + 0.5 wt% CNF. Moreover, CNF lead to an increase in the C-S-H gel porosity and a decrease in both the capillary porosity and the total porosity. Based on scratch testing, adding 0.1 wt% CNF yields a 4.5% increase in fracture toughness and adding 0.5 wt% CNF yields a 7.6% increase in fracture toughness. Finally, micromechanical modelling predicts an increase of respectively 5.97% and 21.78% in the average Young's modulus following CNF modification at 0.1 wt% CNF and 0.5 wt% CNF levels.

摘要

近年来,碳纳米纤维已被研究作为水泥基复合材料的一种合适增强材料,以生产具有改进的机械、电气、磁和自传感性能的新型多功能材料。尽管有多项研究,但碳纳米纤维与波特兰水泥水化产物之间的相互作用尚未完全了解,这对宏观尺度上的力学响应和耐久性有重大影响。因此,研究目的是研究碳纳米纤维对波特兰水泥浆体纳米结构和水化产物分布的影响。采用一种新颖的合成方法,浇筑了水灰比(w/c)=0.44、按水泥质量分数分别添加0.0 wt%、0.1 wt%和0.5 wt%碳纳米纤维(CNF)的波特兰水泥试件。通过多步骤方法实现碳纳米纤维(CNF)的均匀分散:在利用超声能量对碳纳米纤维进行预分散后,在高剪切混合和机械搅拌步骤中,利用未水化的水泥颗粒对碳纳米纤维进一步分散。高分辨率扫描电子显微镜分析表明,碳纳米纤维填充纳米孔并连接硅酸钙水合物(C-S-H)颗粒。网格纳米压痕测试表明,碳纳米纤维通过诱导向更高值的偏移(η = 0.76 - 0.93)影响局部堆积密度的概率分布函数。统计反卷积分析表明,从普通水泥到水泥 + 0.1 wt% CNF,碳纳米纤维使高密度C-S-H的比例增加6.7%,从普通水泥到水泥 + 0.5 wt% CNF增加10.7%。此外,CNF导致C-S-H凝胶孔隙率增加,毛细孔隙率和总孔隙率降低。基于划痕测试,添加0.1 wt% CNF使断裂韧性提高4.5%,添加0.5 wt% CNF使断裂韧性提高7.6%。最后,微观力学模型预测,在0.1 wt% CNF和0.5 wt% CNF水平下进行CNF改性后,平均杨氏模量分别增加5.97%和21.78%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验