Suppr超能文献

混凝土徐变的纳米颗粒起源

Nanogranular origin of concrete creep.

作者信息

Vandamme Matthieu, Ulm Franz-Josef

机构信息

Université Paris-Est, Ecole des Ponts ParisTech-UR Navier, Champs-sur-Marne, France.

出版信息

Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10552-7. doi: 10.1073/pnas.0901033106. Epub 2009 Jun 17.

Abstract

Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

摘要

混凝土是一种在室温下通过将波特兰水泥与水、沙子和骨料混合而成的固体,在负载下会发生随时间变化的变形。这种徐变以一种会降低耐久性并缩短混凝土结构寿命的速率发生。然而,尽管经过了数十年的研究,混凝土徐变的起源仍然未知。在这里,我们测量了硅酸钙水合物(C-S-H)的原位徐变行为,C-S-H是构成波特兰水泥混凝土基本结构单元的纳米级颗粒。我们表明,C-S-H表现出对数徐变,其仅取决于三种结构不同但成分相似的C-S-H形式的堆积:低密度、高密度、超高密度。我们证明徐变速率(约为1/t)可能是由于遵循颗粒物理学的自由体积动力学理论,纳米级颗粒在极限堆积密度附近重新排列所致。这些发现可能为纳米工程混凝土材料和结构奠定新的基础,通过纳米级颗粒的堆积密度分布来监测,使其具有最小的徐变速率,并在短时间内通过纳米级徐变测量进行预测,其精度与多年来进行的宏观徐变试验一样精确。

相似文献

1
Nanogranular origin of concrete creep.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10552-7. doi: 10.1073/pnas.0901033106. Epub 2009 Jun 17.
2
Creep behavior of reinforced concrete-filled steel tubular columns under axial compression.
PLoS One. 2021 Sep 20;16(9):e0255603. doi: 10.1371/journal.pone.0255603. eCollection 2021.
3
Long-term creep deformations in colloidal calcium-silicate-hydrate gels by accelerated aging simulations.
J Colloid Interface Sci. 2019 Apr 15;542:339-346. doi: 10.1016/j.jcis.2019.02.022. Epub 2019 Feb 7.
4
Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus.
Dent Mater. 2013 May;29(5):580-93. doi: 10.1016/j.dental.2013.03.007. Epub 2013 Mar 26.
5
Nanostructured calcium silicate hydrate seeds accelerate concrete hardening: a combined assessment of benefits and risks.
Arch Toxicol. 2012 Jul;86(7):1077-87. doi: 10.1007/s00204-012-0839-x. Epub 2012 Mar 31.
7
Reuse of ultrafine mineral wool production waste in the manufacture of refractory concrete.
J Environ Manage. 2016 Jul 1;176:149-56. doi: 10.1016/j.jenvman.2016.03.045. Epub 2016 Apr 6.
8
Creep constitutive modeling of the shear strength of the permafrost-concrete interface considering the stress level at -1°C.
PLoS One. 2024 Apr 30;19(4):e0297824. doi: 10.1371/journal.pone.0297824. eCollection 2024.
9
Characterization of eco-cement paste produced from waste sludges.
Chemosphere. 2011 Jun;84(2):220-6. doi: 10.1016/j.chemosphere.2011.04.050. Epub 2011 May 13.
10
β-Dicalcium silicate-based cement: synthesis, characterization and in vitro bioactivity and biocompatibility studies.
J Biomed Mater Res A. 2014 Oct;102(10):3693-703. doi: 10.1002/jbm.a.35041. Epub 2013 Dec 12.

引用本文的文献

1
Nanoscale Insights into the Mechanical and Tribological Properties of a Nanocomposite Coating.
Nanomaterials (Basel). 2025 Aug 19;15(16):1280. doi: 10.3390/nano15161280.
4
The Effect of Relative Humidity on Creep Behavior of Cement Paste Microprism.
Materials (Basel). 2025 Jan 16;18(2):406. doi: 10.3390/ma18020406.
5
Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model.
Materials (Basel). 2023 Jun 8;16(12):4274. doi: 10.3390/ma16124274.
6
The Influence of Fly Ash on the Tensile Creep Prediction of High-Strength Concrete at Early Ages.
Materials (Basel). 2023 Feb 4;16(4):1337. doi: 10.3390/ma16041337.
7
Effect of Carbon Nanofiber Clustering on the Micromechanical Properties of a Cement Paste.
Nanomaterials (Basel). 2022 Jan 10;12(2):223. doi: 10.3390/nano12020223.
9
The physics of cement cohesion.
Sci Adv. 2021 Aug 4;7(32). doi: 10.1126/sciadv.abg5882. Print 2021 Aug.

本文引用的文献

1
Physics of the granular state.
Science. 1992 Mar 20;255(5051):1523-31. doi: 10.1126/science.255.5051.1523.
2
Composition and density of nanoscale calcium-silicate-hydrate in cement.
Nat Mater. 2007 Apr;6(4):311-6. doi: 10.1038/nmat1871. Epub 2007 Mar 25.
3
Improving the density of jammed disordered packings using ellipsoids.
Science. 2004 Feb 13;303(5660):990-3. doi: 10.1126/science.1093010.
4
Logarithmic rate dependence of force networks in sheared granular materials.
Nature. 2003 Feb 27;421(6926):928-31. doi: 10.1038/nature01394.
5
Rearrangements and dilatancy for sheared dense materials.
Phys Rev Lett. 2002 Nov 4;89(19):195503. doi: 10.1103/PhysRevLett.89.195503. Epub 2002 Oct 21.
6
Density relaxation in a vibrated granular material.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 May;51(5):3957-3963. doi: 10.1103/physreve.51.3957.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验