Vandamme Matthieu, Ulm Franz-Josef
Université Paris-Est, Ecole des Ponts ParisTech-UR Navier, Champs-sur-Marne, France.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10552-7. doi: 10.1073/pnas.0901033106. Epub 2009 Jun 17.
Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.
混凝土是一种在室温下通过将波特兰水泥与水、沙子和骨料混合而成的固体,在负载下会发生随时间变化的变形。这种徐变以一种会降低耐久性并缩短混凝土结构寿命的速率发生。然而,尽管经过了数十年的研究,混凝土徐变的起源仍然未知。在这里,我们测量了硅酸钙水合物(C-S-H)的原位徐变行为,C-S-H是构成波特兰水泥混凝土基本结构单元的纳米级颗粒。我们表明,C-S-H表现出对数徐变,其仅取决于三种结构不同但成分相似的C-S-H形式的堆积:低密度、高密度、超高密度。我们证明徐变速率(约为1/t)可能是由于遵循颗粒物理学的自由体积动力学理论,纳米级颗粒在极限堆积密度附近重新排列所致。这些发现可能为纳米工程混凝土材料和结构奠定新的基础,通过纳米级颗粒的堆积密度分布来监测,使其具有最小的徐变速率,并在短时间内通过纳米级徐变测量进行预测,其精度与多年来进行的宏观徐变试验一样精确。