Suppr超能文献

基于光线投射模型和 DC-BLSTM 网络的三维神经元显微镜图像分割。

3D Neuron Microscopy Image Segmentation via the Ray-Shooting Model and a DC-BLSTM Network.

出版信息

IEEE Trans Med Imaging. 2021 Jan;40(1):26-37. doi: 10.1109/TMI.2020.3021493. Epub 2020 Dec 29.

Abstract

The morphology reconstruction (tracing) of neurons in 3D microscopy images is important to neuroscience research. However, this task remains very challenging because of the low signal-to-noise ratio (SNR) and the discontinued segments of neurite patterns in the images. In this paper, we present a neuronal structure segmentation method based on the ray-shooting model and the Long Short-Term Memory (LSTM)-based network to enhance the weak-signal neuronal structures and remove background noise in 3D neuron microscopy images. Specifically, the ray-shooting model is used to extract the intensity distribution features within a local region of the image. And we design a neural network based on the dual channel bidirectional LSTM (DC-BLSTM) to detect the foreground voxels according to the voxel-intensity features and boundary-response features extracted by multiple ray-shooting models that are generated in the whole image. This way, we transform the 3D image segmentation task into multiple 1D ray/sequence segmentation tasks, which makes it much easier to label the training samples than many existing Convolutional Neural Network (CNN) based 3D neuron image segmentation methods. In the experiments, we evaluate the performance of our method on the challenging 3D neuron images from two datasets, the BigNeuron dataset and the Whole Mouse Brain Sub-image (WMBS) dataset. Compared with the neuron tracing results on the segmented images produced by other state-of-the-art neuron segmentation methods, our method improves the distance scores by about 32% and 27% in the BigNeuron dataset, and about 38% and 27% in the WMBS dataset.

摘要

三维显微镜图像中神经元的形态重建(追踪)对神经科学研究很重要。然而,由于图像中的信噪比(SNR)低和神经突模式的不连续段,这项任务仍然极具挑战性。在本文中,我们提出了一种基于光线投射模型和基于长短期记忆(LSTM)网络的神经元结构分割方法,以增强三维神经元显微镜图像中的弱信号神经元结构并去除背景噪声。具体来说,光线投射模型用于提取图像局部区域内的强度分布特征。我们设计了一种基于双通道双向 LSTM(DC-BLSTM)的神经网络,根据从整个图像中生成的多个光线投射模型提取的体素强度特征和边界响应特征来检测前景体素。通过这种方式,我们将三维图像分割任务转化为多个一维光线/序列分割任务,这使得标记训练样本比许多现有的基于卷积神经网络(CNN)的三维神经元图像分割方法容易得多。在实验中,我们在来自两个数据集(BigNeuron 数据集和全鼠脑子图像(WMBS)数据集)的具有挑战性的三维神经元图像上评估了我们方法的性能。与其他最先进的神经元分割方法在分割图像上的神经元追踪结果相比,我们的方法在 BigNeuron 数据集上的距离得分提高了约 32%和 27%,在 WMBS 数据集上的距离得分提高了约 38%和 27%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验