Suppr超能文献

重新审视平行四边形:探索向量空间模型在简单类比中的局限性。

Parallelograms revisited: Exploring the limitations of vector space models for simple analogies.

机构信息

Department of Computer Science, Princeton University, United States of America.

Department of Psychology, University of California, Berkeley, United States of America.

出版信息

Cognition. 2020 Dec;205:104440. doi: 10.1016/j.cognition.2020.104440. Epub 2020 Aug 31.

Abstract

Classic psychological theories have demonstrated the power and limitations of spatial representations, providing geometric tools for reasoning about the similarity of objects and showing that human intuitions sometimes violate the constraints of geometric spaces. Recent machine learning methods for deriving vector-space embeddings of words have begun to garner attention for their surprising capacity to capture simple analogies consistently across large corpora, giving new life to a classic model of analogies as parallelograms that was first proposed and briefly explored by psychologists. We evaluate the parallelogram model of analogy as applied to modern data-driven word embeddings, providing a detailed analysis of the extent to which this approach captures human behavior in the domain of word pairs. Using a large novel benchmark dataset of human analogy completions, we show that word similarity alone surprisingly captures some aspects of human responses better than the parallelogram model. To gain a fine-grained picture of how well these models predict relational similarity, we also collect a large dataset of human relational similarity judgments and find that the parallelogram model captures some semantic relationships better than others. Finally, we provide evidence for deeper limitations of the parallelogram model of analogy based on the intrinsic geometric constraints of vector spaces, paralleling classic results for item similarity. Taken together, these results show that while modern word embeddings do an impressive job of capturing semantic similarity at scale, the parallelogram model alone is insufficient to account for how people form even the simplest analogies.

摘要

经典的心理学理论已经展示了空间表示的力量和局限性,为推理对象的相似性提供了几何工具,并表明人类的直觉有时会违反几何空间的约束。最近用于推导单词向量空间嵌入的机器学习方法因其在大型语料库中一致捕捉简单类比的惊人能力而开始受到关注,为类比作为平行四边形的经典模型赋予了新的生命,该模型最初由心理学家提出并简要探讨。我们评估了类比的平行四边形模型在现代数据驱动的单词嵌入中的应用,对这种方法在单词对领域中捕捉人类行为的程度进行了详细分析。使用一个大型新颖的人类类比完成基准数据集,我们表明,仅单词相似性就令人惊讶地比平行四边形模型更好地捕捉了人类反应的某些方面。为了更详细地了解这些模型在预测关系相似性方面的表现如何,我们还收集了大量人类关系相似性判断的数据集,并发现平行四边形模型比其他模型更好地捕捉了一些语义关系。最后,我们根据向量空间的内在几何约束为类比的平行四边形模型提供了更深层次的局限性的证据,这与项目相似性的经典结果相似。综上所述,这些结果表明,尽管现代单词嵌入在大规模上令人印象深刻地捕捉了语义相似性,但仅平行四边形模型不足以解释人们如何形成最简单的类比。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验