Suppr超能文献

转录组分析一株经工程改造以利用木糖的产热梭菌菌株:木糖与纤维二糖喂养的反应。

Transcriptomic analysis of a Clostridium thermocellum strain engineered to utilize xylose: responses to xylose versus cellobiose feeding.

机构信息

Grupo de Diseño de Productos Y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Bogotá, Colombia.

Grupo de Investigación CINBIOS, Department of Microbiology, Universidad Popular del Cesar, Valledupar-Cesar, Colombia.

出版信息

Sci Rep. 2020 Sep 3;10(1):14517. doi: 10.1038/s41598-020-71428-6.

Abstract

Clostridium (Ruminiclostridium) thermocellum is recognized for its ability to ferment cellulosic biomass directly, but it cannot naturally grow on xylose. Recently, C. thermocellum (KJC335) was engineered to utilize xylose through expressing a heterologous xylose catabolizing pathway. Here, we compared KJC335's transcriptomic responses to xylose versus cellobiose as the primary carbon source and assessed how the bacteria adapted to utilize xylose. Our analyses revealed 417 differentially expressed genes (DEGs) with log fold change (FC) >|1| and 106 highly DEGs (log FC >|2|). Among the DEGs, two putative sugar transporters, cbpC and cbpD, were up-regulated, suggesting their contribution to xylose transport and assimilation. Moreover, the up-regulation of specific transketolase genes (tktAB) suggests the importance of this enzyme for xylose metabolism. Results also showed remarkable up-regulation of chemotaxis and motility associated genes responding to xylose feeding, as well as widely varying gene expression in those encoding cellulosomal enzymes. For the down-regulated genes, several were categorized in gene ontology terms oxidation-reduction processes, ATP binding and ATPase activity, and integral components of the membrane. This study informs potentially critical, enabling mechanisms to realize the conceptually attractive Next-Generation Consolidated BioProcessing approach where a single species is sufficient for the co-fermentation of cellulose and hemicellulose.

摘要

热纤梭菌(Ruminiclostridium)因其直接发酵纤维素生物质的能力而被认可,但它不能自然利用木糖。最近,通过表达异源木糖分解代谢途径,热纤梭菌(KJC335)被工程改造为能够利用木糖。在这里,我们比较了 KJC335 对木糖与纤维二糖作为主要碳源的转录组响应,并评估了细菌如何适应利用木糖。我们的分析揭示了 417 个差异表达基因(DEGs),其对数倍数变化(FC)> |1|,以及 106 个高度差异表达基因(log FC> |2|)。在这些 DEGs 中,两个假定的糖转运蛋白 cbpC 和 cbpD 被上调,表明它们对木糖的运输和同化有贡献。此外,特定转酮醇酶基因(tktAB)的上调表明该酶对木糖代谢的重要性。结果还显示,对木糖喂养有反应的趋化性和运动相关基因显著上调,以及那些编码纤维素酶的基因的表达广泛变化。对于下调的基因,有几个被归类于基因本体术语氧化还原过程、ATP 结合和 ATP 酶活性以及膜的整体成分。这项研究提供了潜在的关键、使能机制,以实现概念上有吸引力的下一代综合生物加工方法,其中单一物种足以共发酵纤维素和半纤维素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ca1/7471329/1a9d3a9af9c3/41598_2020_71428_Fig1_HTML.jpg

相似文献

3
Engineering the cellulolytic bacterium, Clostridium thermocellum, to co-utilize hemicellulose.
Metab Eng. 2024 May;83:193-205. doi: 10.1016/j.ymben.2024.03.008. Epub 2024 Apr 15.
5
LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.
Appl Environ Microbiol. 2017 Feb 15;83(5). doi: 10.1128/AEM.02751-16. Print 2017 Mar 1.
7
Revisiting the Regulation of the Primary Scaffoldin Gene in Clostridium thermocellum.
Appl Environ Microbiol. 2017 Mar 31;83(8). doi: 10.1128/AEM.03088-16. Print 2017 Apr 15.
9
Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
BMC Microbiol. 2011 Jun 14;11:134. doi: 10.1186/1471-2180-11-134.

引用本文的文献

2
Sugar transport in thermophiles: Bridging lignocellulose deconstruction and bioconversion.
J Ind Microbiol Biotechnol. 2024 Jan 9;51. doi: 10.1093/jimb/kuae020.
3
Genome-Wide Transcription Factor DNA Binding Sites and Gene Regulatory Networks in .
Front Microbiol. 2021 Sep 7;12:695517. doi: 10.3389/fmicb.2021.695517. eCollection 2021.
4
Utilization of Monosaccharides by ATCC 27405 through Adaptive Evolution.
Microorganisms. 2021 Jul 4;9(7):1445. doi: 10.3390/microorganisms9071445.

本文引用的文献

1
Identifying promoters for gene expression in .
Metab Eng Commun. 2015 Mar 30;2:23-29. doi: 10.1016/j.meteno.2015.03.002. eCollection 2015 Dec.
3
Expressing the in engineered improves ethanol production.
Biotechnol Biofuels. 2018 Sep 6;11:242. doi: 10.1186/s13068-018-1245-2. eCollection 2018.
4
Signature pathway expression of xylose utilization in the genetically engineered industrial yeast Saccharomyces cerevisiae.
PLoS One. 2018 Apr 5;13(4):e0195633. doi: 10.1371/journal.pone.0195633. eCollection 2018.
6
Pathview Web: user friendly pathway visualization and data integration.
Nucleic Acids Res. 2017 Jul 3;45(W1):W501-W508. doi: 10.1093/nar/gkx372.
7
Development of a core kinetic metabolic model consistent with multiple genetic perturbations.
Biotechnol Biofuels. 2017 May 2;10:108. doi: 10.1186/s13068-017-0792-2. eCollection 2017.
8
The E. coli molecular phenotype under different growth conditions.
Sci Rep. 2017 Apr 18;7:45303. doi: 10.1038/srep45303.
9
Bacterial xylanases: biology to biotechnology.
3 Biotech. 2016 Dec;6(2):150. doi: 10.1007/s13205-016-0457-z. Epub 2016 Jun 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验