Dept. of Environmental, Process & Energy Engineering, MCI - The Entrepreneurial School, Austria; Univ. Hospital of Otorhinolaryngology, Medical University Innsbruck, Austria.
Dept. of Environmental, Process & Energy Engineering, MCI - The Entrepreneurial School, Austria; Dept. of Fluid Mechanics, Friedrich-Alexander University Erlangen-Nuremberg, Germany.
Respir Physiol Neurobiol. 2021 Jan;283:103533. doi: 10.1016/j.resp.2020.103533. Epub 2020 Sep 1.
Objective parameters to assess the physical flow conditions of breathing are scarce and decisions for surgery, e.g. nasal septum correction, mainly rely on subjective surgeon judgment. To define decision supporting parameters, we compare laser Doppler anemometry (LDA) and numerical computational fluid dynamic simulations (CFD) of the airflow velocity vector fields in the nasal cavity, including lattice Boltzmann (LB) and finite volume methods (FVM). The simulations are based on an anonymous patient CT dataset with septal deviation. LDA measurements are preformed using a 3D printed model. Nasal airflow geometry is randomly deformed in order to approximate surgical changes. The root-mean-square velocity error near the nasal valve of laser Doppler anemometry and lattice Boltzmann simulations is 0.071. Changes in geometry similarly affect both measurement and simulation.
评估呼吸物理流场的客观参数稀缺,因此手术(例如鼻中隔矫正)的决策主要依赖于主观的外科医生判断。为了定义决策支持参数,我们比较了鼻腔气流速度矢量场的激光多普勒风速仪 (LDA) 和数值计算流体动力学模拟 (CFD),包括格子玻尔兹曼 (LB) 和有限体积方法 (FVM)。这些模拟基于具有鼻中隔偏曲的匿名患者 CT 数据集。LDA 测量使用 3D 打印模型进行。为了近似手术变化,随机变形鼻腔气流几何形状。激光多普勒风速仪和格子玻尔兹曼模拟在鼻阀附近的均方根速度误差为 0.071。几何形状的变化同样会影响测量和模拟。