文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Computational Rhinology: Unraveling Discrepancies between In Silico and In Vivo Nasal Airflow Assessments for Enhanced Clinical Decision Support.

作者信息

Johnsen Sverre Gullikstad

机构信息

SINTEF, NO-7465 Trondheim, Norway.

出版信息

Bioengineering (Basel). 2024 Feb 28;11(3):239. doi: 10.3390/bioengineering11030239.


DOI:10.3390/bioengineering11030239
PMID:38534513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10967811/
Abstract

Computational rhinology is a specialized branch of biomechanics leveraging engineering techniques for mathematical modelling and simulation to complement the medical field of rhinology. Computational rhinology has already contributed significantly to advancing our understanding of the nasal function, including airflow patterns, mucosal cooling, particle deposition, and drug delivery, and is foreseen as a crucial element in, e.g., the development of virtual surgery as a clinical, patient-specific decision support tool. The current paper delves into the field of computational rhinology from a nasal airflow perspective, highlighting the use of computational fluid dynamics to enhance diagnostics and treatment of breathing disorders. This paper consists of three distinct parts-an introduction to and review of the field of computational rhinology, a review of the published literature on in vitro and in silico studies of nasal airflow, and the presentation and analysis of previously unpublished high-fidelity CFD simulation data of in silico rhinomanometry. While the two first parts of this paper summarize the current status and challenges in the application of computational tools in rhinology, the last part addresses the gross disagreement commonly observed when comparing in silico and in vivo rhinomanometry results. It is concluded that this discrepancy cannot readily be explained by CFD model deficiencies caused by poor choice of turbulence model, insufficient spatial or temporal resolution, or neglecting transient effects. Hence, alternative explanations such as nasal cavity compliance or drag effects due to nasal hair should be investigated.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/6dbc4688cf19/bioengineering-11-00239-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/b0bd10c71453/bioengineering-11-00239-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/79d6b717d5bc/bioengineering-11-00239-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/5ec0238a8b69/bioengineering-11-00239-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/aebd3c72817d/bioengineering-11-00239-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/909c4ee59b67/bioengineering-11-00239-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/ce4100bbf2db/bioengineering-11-00239-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/497e33c6c2f2/bioengineering-11-00239-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f6bb8a18a1a4/bioengineering-11-00239-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/3900b5d150e9/bioengineering-11-00239-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/98e61fa6adf3/bioengineering-11-00239-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f9069522e9af/bioengineering-11-00239-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/74a580adf310/bioengineering-11-00239-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/cb32fe025be1/bioengineering-11-00239-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f0baa4a25163/bioengineering-11-00239-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/b0d54bc4886d/bioengineering-11-00239-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/1fb319391c2f/bioengineering-11-00239-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/9bb23762199a/bioengineering-11-00239-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/c56e1c77a086/bioengineering-11-00239-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/39d0262befc4/bioengineering-11-00239-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f3d4372ecdb2/bioengineering-11-00239-g018a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/70e606007fb1/bioengineering-11-00239-g019a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/4037320e956f/bioengineering-11-00239-g020a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/3d4b71ce6056/bioengineering-11-00239-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/26f52d914792/bioengineering-11-00239-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/99c6d121bdd9/bioengineering-11-00239-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/6864bafe66b9/bioengineering-11-00239-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f97eb49c6992/bioengineering-11-00239-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/b3ad1c08ec08/bioengineering-11-00239-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/4541d38e8720/bioengineering-11-00239-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/a8a683fc740a/bioengineering-11-00239-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/92bc6c310255/bioengineering-11-00239-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/6dbc4688cf19/bioengineering-11-00239-g032.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/b0bd10c71453/bioengineering-11-00239-g030.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/79d6b717d5bc/bioengineering-11-00239-g031.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/5ec0238a8b69/bioengineering-11-00239-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/aebd3c72817d/bioengineering-11-00239-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/909c4ee59b67/bioengineering-11-00239-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/ce4100bbf2db/bioengineering-11-00239-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/497e33c6c2f2/bioengineering-11-00239-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f6bb8a18a1a4/bioengineering-11-00239-g006a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/3900b5d150e9/bioengineering-11-00239-g007a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/98e61fa6adf3/bioengineering-11-00239-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f9069522e9af/bioengineering-11-00239-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/74a580adf310/bioengineering-11-00239-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/cb32fe025be1/bioengineering-11-00239-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f0baa4a25163/bioengineering-11-00239-g012a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/b0d54bc4886d/bioengineering-11-00239-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/1fb319391c2f/bioengineering-11-00239-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/9bb23762199a/bioengineering-11-00239-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/c56e1c77a086/bioengineering-11-00239-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/39d0262befc4/bioengineering-11-00239-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f3d4372ecdb2/bioengineering-11-00239-g018a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/70e606007fb1/bioengineering-11-00239-g019a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/4037320e956f/bioengineering-11-00239-g020a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/3d4b71ce6056/bioengineering-11-00239-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/26f52d914792/bioengineering-11-00239-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/99c6d121bdd9/bioengineering-11-00239-g023.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/6864bafe66b9/bioengineering-11-00239-g024.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/f97eb49c6992/bioengineering-11-00239-g025.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/b3ad1c08ec08/bioengineering-11-00239-g026.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/4541d38e8720/bioengineering-11-00239-g027.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/a8a683fc740a/bioengineering-11-00239-g028.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/92bc6c310255/bioengineering-11-00239-g029.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/67aa/10967811/6dbc4688cf19/bioengineering-11-00239-g032.jpg

相似文献

[1]
Computational Rhinology: Unraveling Discrepancies between In Silico and In Vivo Nasal Airflow Assessments for Enhanced Clinical Decision Support.

Bioengineering (Basel). 2024-2-28

[2]
Computational fluid dynamics (CFD), virtual rhinomanometry, and virtual surgery for neonatal congenital nasal pyriform aperture stenosis.

Int J Pediatr Otorhinolaryngol. 2024-7

[3]
New CFD tools to evaluate nasal airflow.

Eur Arch Otorhinolaryngol. 2017-8

[4]
Rhinomanometry Versus Computational Fluid Dynamics: Correlated, but Different Techniques.

Am J Rhinol Allergy. 2021-3

[5]
Rhinomanometry: A Comprehensive Review of Its Applications and Advancements in Rhinology Practice.

Cureus. 2024-5-30

[6]
An overview of numerical modelling of nasal airflow.

Rhinology. 2006-3

[7]
Computational Fluid Dynamics in the assessment of nasal obstruction in children.

Eur Ann Otorhinolaryngol Head Neck Dis. 2019-4

[8]
Comparison of rhinomanometric and computational fluid dynamic assessment of nasal resistance with respect to measurement accuracy.

Int J Comput Assist Radiol Surg. 2022-9

[9]
Impacts of fluid dynamics simulation in study of nasal airflow physiology and pathophysiology in realistic human three-dimensional nose models.

Clin Exp Otorhinolaryngol. 2012-11-13

[10]
[Assessment of nasal function by computational fluid dynamics].

Ugeskr Laeger. 2022-1-31

引用本文的文献

[1]
A Study on the Effects of Embodied and Cognitive Interventions on Adolescents' Flow Experience and Cognitive Patterns.

Behav Sci (Basel). 2025-6-3

本文引用的文献

[1]
Changes in Attitudes of Life Insurance Companies Towards Patients with Sleep Apnea Syndrome Undergoing Continuous Positive Airway Pressure in Japan.

Juntendo Iji Zasshi. 2022-12-1

[2]
Potential of computational models in personalized treatment of obstructive sleep apnea: a patient-specific partial 3D finite element study.

Biomech Model Mechanobiol. 2024-4

[3]
Numerical Simulation of Nasal Resistance Using Three-dimensional Models of the Nasal Cavity and Paranasal Sinus.

Tokai J Exp Clin Med. 2023-7-20

[4]
Computational fluid dynamics calculations in inferior turbinate surgery: a cohort study.

Eur Arch Otorhinolaryngol. 2023-11

[5]
Correlation of Nasal Mucosal Temperature and Nasal Patency-A Computational Fluid Dynamics Study.

Laryngoscope. 2023-6

[6]
Numerical and Experimental Analysis of Drug Inhalation in Realistic Human Upper Airway Model.

Pharmaceuticals (Basel). 2023-3-7

[7]
Numerical analysis of the ostiomeatal complex aeration using the CFD method.

Sci Rep. 2023-3-9

[8]
Outcome of nasal measurements in patients with OSA - Mounting evidence of a nasal endotype.

Sleep Med. 2023-3

[9]
Computational analysis of human upper airway aerodynamics.

Med Biol Eng Comput. 2023-2

[10]
Unmet challenges in septoplasty-nordic studies from a uniform healthcare and geographical area.

Front Surg. 2022-12-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索