Suppr超能文献

评估脊柱手术患者的潜在骨质量:双能 X 射线吸收法(DXA)及其他方法的叙述性综述。

Assessing underlying bone quality in spine surgery patients: a narrative review of dual-energy X-ray absorptiometry (DXA) and alternatives.

机构信息

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

出版信息

Spine J. 2021 Feb;21(2):321-331. doi: 10.1016/j.spinee.2020.08.020. Epub 2020 Sep 2.

Abstract

Poor bone quality and low bone mineral density (BMD) have been previously tied to higher rates of postoperative mechanical complications in patients undergoing spinal fusion. These include higher rates of proximal junctional kyphosis, screw pullout, pseudoarthrosis, and interbody subsidence. For these reasons, accurate preoperative assessment of a patient's underlying bone quality is paramount for all elective procedures. Dual-energy X-ray absorptiometry (DXA) is currently considered to be the gold standard for assessing BMD. However, a growing body of research has suggested that in vivo assessments of BMD using DXA are inaccurate and have, at best, moderate correlations to postoperative mechanical complications. Consequently, there have been investigations into using alternative methods for assessing in vivo bone quality, including using computed tomography (CT) and magnetic resonance imaging (MRI) volumes that are commonly obtained as part of surgical evaluation. Here we review the data regarding the accuracy of DXA for the evaluation of spine bone quality and describe the alternative imaging modalities currently under investigation.

摘要

先前的研究表明,骨质量差和骨密度(BMD)低与脊柱融合术后机械并发症发生率较高有关。这些并发症包括近端交界性后凸、螺钉拔出、假关节和椎间沉降等。出于这些原因,准确评估患者潜在骨质量对于所有择期手术至关重要。双能 X 射线吸收法(DXA)目前被认为是评估 BMD 的金标准。然而,越来越多的研究表明,DXA 对 BMD 的体内评估并不准确,并且与术后机械并发症的相关性最多只有中等程度。因此,人们一直在研究使用其他方法来评估体内骨质量,包括使用 CT 和 MRI 体积,这些通常是手术评估的一部分。在这里,我们回顾了 DXA 评估脊柱骨质量的准确性的数据,并描述了目前正在研究的替代成像方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验