Demes S, Lique F, Faure A, Rist C
LOMC, Université du Havre and CNRS, Normandie Université, F-76063 Le Havre, France.
Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France.
J Chem Phys. 2020 Sep 7;153(9):094301. doi: 10.1063/5.0015813.
Modeling of the observational spectra of HO allows for a detailed understanding of the interstellar oxygen chemistry. While its spectroscopy was intensively studied earlier, our knowledge about the collision of HO with the abundant colliders in the interstellar medium is rather limited. In order to treat these collisional excitation processes, it is first necessary to calculate the potential energy surface (PES) of the interacting species. We have computed the five-dimensional rigid-rotor PES of the HO-H system from the explicitly correlated coupled-cluster theory at the level of singles and doubles with perturbative corrections for triple excitations [CCSD(T)-F12] with the moderate-size augmented correlation-consistent valence triple zeta (aug-cc-pVTZ) basis set. The well depth of the PES is found to be rather large, about 1887.2 cm. The ab initio potential was fitted over an angular expansion in order to effectively use it in quantum scattering codes. As a first application, we computed dissociation energies for the different nuclear spin isomers of the HO-H complex.
对羟基自由基(HO)观测光谱的建模有助于深入了解星际氧化学。虽然其光谱学在早期已得到深入研究,但我们对HO与星际介质中丰富的碰撞体之间碰撞的了解相当有限。为了处理这些碰撞激发过程,首先需要计算相互作用物种的势能面(PES)。我们采用中等大小的增强相关一致价三重ζ(aug-cc-pVTZ)基组,从单双激发并包含三重激发微扰校正的显式相关耦合簇理论[CCSD(T)-F12]计算了HO-H系统的五维刚性转子PES。发现PES的阱深相当大,约为1887.2厘米。为了在量子散射代码中有效使用,对从头算势能进行了角展开拟合。作为首次应用,我们计算了HO-H复合物不同核自旋异构体的解离能。