Suppr超能文献

基于机器学习分类的序列可识别地表水社区微生物源追踪:综述。

Sequence-enabled community-based microbial source tracking in surface waters using machine learning classification: A review.

机构信息

BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.

BioTechnology Institute, University of Minnesota, St. Paul, MN, USA; Division of Basic & Translational Research, Department of Surgery, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Microbiol Methods. 2020 Oct;177:106050. doi: 10.1016/j.mimet.2020.106050. Epub 2020 Sep 4.

Abstract

The development of Microbial Source Tracking (MST) technologies was borne out of necessity. This was largely due to the: 1) inadequacies of the fecal indicator bacterial paradigm, 2) fact that many fecal bacteria can survive and often grow in the environment, 3) inability of traditional microbiological methods to attribute source, 4) lack of correspondence between numbers of fecal indicator bacteria in waterways and many human pathogens, and 5) source allocation requirements and load determinations needed for total maximum daily loads. The MST tools have changed over time, evolving from culture-dependent to culture-independent molecular analyses. More recently, MST tools based on microbial community analyses, mainly DNA sequencing-based approaches, have been developed in an attempt to overcome some of these issues. These approaches generate large data sets and require the use of sophisticated machine learning algorithms to allocate potential host sources to contaminated waterways. In this review we discuss the origins and needs for community-based MST methods, as well as elaborate on the Bayesian algorithm-based program SourceTracker, which is increasingly being used for the determination of sources of fecal contamination of waterways.

摘要

微生物源追踪 (MST) 技术的发展是出于必要性。这主要是由于:1) 粪便指示细菌范式的不足,2) 许多粪便细菌可以在环境中生存并经常生长,3) 传统微生物方法无法归因于来源,4) 水道中粪便指示细菌数量与许多人类病原体之间缺乏对应关系,以及 5) 总最大日负荷的源分配要求和负荷确定。MST 工具随着时间的推移而发生变化,从基于培养的方法发展到基于非培养的分子分析方法。最近,已经开发了基于微生物群落分析的 MST 工具,主要是基于 DNA 测序的方法,试图克服其中的一些问题。这些方法生成大数据集,并需要使用复杂的机器学习算法将潜在的宿主源分配给受污染的水道。在这篇综述中,我们讨论了基于群落的 MST 方法的起源和需求,并详细介绍了基于贝叶斯算法的程序 SourceTracker,该程序越来越多地用于确定水道中粪便污染的来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验