Lee Jeongjin, Kim Jae-Hyun, You Dong Gil, Kim Sohyun, Um Wooram, Jeon Jueun, Kim Chan Ho, Joo Hyeyeon, Yi Gi-Ra, Park Jae Hyung
Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
School of Chemical Engineering, College of Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
Adv Healthc Mater. 2020 Oct;9(19):e2000877. doi: 10.1002/adhm.202000877. Epub 2020 Sep 7.
Sonodynamic therapy has received increasing attention for cancer treatments as an alternative to photodynamic therapy. However, its clinical applications have been limited by the lack of a sonosensitizer that is capable of producing sufficient amounts of reactive oxygen species (ROS) in response to ultrasound (US) exposure. Herein, PEGylated mesoporous silica-titania nanoparticles (P-MSTNs) are prepared and used as US-responsive nanocarriers for cancer sonotheranostics. Perfluorohexane (PFH), which is chosen as the gas precursor, is physically encapsulated into P-MSTNs using the oil-in-water emulsion method. Owing to the vaporization of the gas precursor, PFH@P-MSTNs (137 nm in diameter) exhibit a strong photoacoustic signal in vivo for at least 6 h. Compared to P-MSTNs, PFH@P-MSTNs generate significantly higher amounts of ROS due to the nanobubble-induced cavitation in the presence of US. When systemically administered to tumor-bearing mice, PFH@P-MSTNs effectively accumulate in the tumor site due to the passive targeting mechanism. Consequently, PFH@P-MSTNs show much higher antitumor efficacy than P-MSTNs due to the enhanced cavitation-mediated ROS generation in response to US exposure. It is considered that PFH@P-MSTNs may hold significant potential for cancer sonotheranostics.
作为光动力疗法的替代方法,声动力疗法在癌症治疗中受到越来越多的关注。然而,其临床应用受到限制,因为缺乏一种能够在超声(US)照射下产生足够量活性氧(ROS)的声敏剂。在此,制备了聚乙二醇化介孔二氧化硅-二氧化钛纳米颗粒(P-MSTNs),并将其用作癌症声动力治疗诊断的超声响应纳米载体。选择全氟己烷(PFH)作为气体前驱体,采用水包油乳液法将其物理包裹在P-MSTNs中。由于气体前驱体的汽化,PFH@P-MSTNs(直径137 nm)在体内至少6小时内表现出强烈的光声信号。与P-MSTNs相比,在超声存在下,PFH@P-MSTNs由于纳米气泡诱导的空化作用而产生显著更多的ROS。当全身给药于荷瘤小鼠时,PFH@P-MSTNs由于被动靶向机制而有效地在肿瘤部位积累。因此,由于在超声照射下空化介导的ROS生成增强,PFH@P-MSTNs显示出比P-MSTNs更高的抗肿瘤疗效。据认为,PFH@P-MSTNs在癌症声动力治疗诊断方面可能具有巨大潜力。