文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于活性氧的非侵入性疗法在癌症治疗中的应用及增强策略。

Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment.

作者信息

Guo Qiuyan, Tang Yingnan, Wang Shengmei, Xia Xinhua

机构信息

School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.

School of Pharmacy, Hunan Vocational College of Science And Technology, Changsha, Hunan, 410208, China.

出版信息

Redox Biol. 2025 Mar;80:103515. doi: 10.1016/j.redox.2025.103515. Epub 2025 Jan 28.


DOI:10.1016/j.redox.2025.103515
PMID:39904189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11847112/
Abstract

Reactive oxygen species (ROS) play a crucial role in the pathogenesis of cancer. Non-invasive therapies that promote intracellular ROS generation, including photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), have emerged as novel approaches for cancer treatment. These therapies directly kill tumor cells by generating ROS, and although they show great promise in tumor treatment, many challenges remain to be addressed in practical applications. Firstly, the inherent complexity of the tumor microenvironment (TME), such as hypoxia and elevated glutathione (GSH) levels, hinders ROS generation, thereby significantly diminishing the efficacy of ROS-based therapies. In addition, these therapies are influenced by their intrinsic mechanisms. To overcome these limitations, various nanoparticle (NP) systems have been developed to improve the therapeutic efficacy of non-invasive therapies against tumors. This review first summarizes the mechanisms of ROS generation for each non-invasive therapy and their current limitations, with a particular focus on the enhancement strategies for each therapy based on NP systems. Additionally, various strategies to modulate the TME are highlighted. These strategies aim to amplify ROS generation in non-invasive therapies and enhance their anti-tumor efficiency. Finally, the current challenges and possible solutions for the clinical translation of ROS-based non-invasive therapies are also discussed.

摘要

活性氧(ROS)在癌症发病机制中起关键作用。促进细胞内ROS生成的非侵入性疗法,包括光动力疗法(PDT)、声动力疗法(SDT)和化学动力疗法(CDT),已成为癌症治疗的新方法。这些疗法通过产生活性氧直接杀死肿瘤细胞,尽管它们在肿瘤治疗中显示出巨大潜力,但在实际应用中仍有许多挑战有待解决。首先,肿瘤微环境(TME)的内在复杂性,如缺氧和谷胱甘肽(GSH)水平升高,会阻碍ROS的生成,从而显著降低基于ROS的疗法的疗效。此外,这些疗法还受其内在机制的影响。为克服这些限制,已开发出各种纳米颗粒(NP)系统以提高非侵入性肿瘤治疗的疗效。本综述首先总结了每种非侵入性疗法产生活性氧的机制及其当前局限性,特别关注基于NP系统的每种疗法的增强策略。此外,还重点介绍了调节肿瘤微环境的各种策略。这些策略旨在增强非侵入性疗法中的ROS生成并提高其抗肿瘤效率。最后,还讨论了基于ROS的非侵入性疗法临床转化的当前挑战和可能的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/64d427c10ea2/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/9617695d6684/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/9822911b74a1/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/5e638866f5fe/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/d46461195286/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/d1d5b25fba30/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/669acdbe8170/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/cb7cf6ef4c19/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/90e4706a86b8/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/1b1070210baa/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/34293158873a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/a209eda04f1c/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/98c00d454a28/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/4ad3a2e5a98b/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/cdff8215ffca/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/81db8f77cbef/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/3aa9c8835f21/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/9a6186a73ebe/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/954dd57f4c37/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/80739d538f58/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/fddd2324d2be/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/ec4b9c30e9bd/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/891538b60720/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/8b9b91cb3a12/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/b1d15f2ad73f/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/134dd44ed2ba/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/64d427c10ea2/mmcfigs6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/9617695d6684/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/9822911b74a1/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/5e638866f5fe/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/d46461195286/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/d1d5b25fba30/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/669acdbe8170/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/cb7cf6ef4c19/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/90e4706a86b8/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/1b1070210baa/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/34293158873a/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/a209eda04f1c/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/98c00d454a28/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/4ad3a2e5a98b/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/cdff8215ffca/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/81db8f77cbef/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/3aa9c8835f21/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/9a6186a73ebe/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/954dd57f4c37/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/80739d538f58/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/fddd2324d2be/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/ec4b9c30e9bd/mmcfigs1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/891538b60720/mmcfigs2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/8b9b91cb3a12/mmcfigs3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/b1d15f2ad73f/mmcfigs4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/134dd44ed2ba/mmcfigs5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d3a/11847112/64d427c10ea2/mmcfigs6.jpg

相似文献

[1]
Applications and enhancement strategies of ROS-based non-invasive therapies in cancer treatment.

Redox Biol. 2025-3

[2]
Nanozyme-mediated glutathione depletion for enhanced ROS-based cancer therapies: a comprehensive review.

Nanomedicine (Lond). 2025-2

[3]
Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.

Acc Chem Res. 2019-6-26

[4]
Enhancement of tumor lethality of ROS in photodynamic therapy.

Cancer Med. 2021-1

[5]
Key Modulation of ROS and HSP for Effective Therapy Against Hypoxic Tumor with Multifunctional Nanosystem.

Int J Nanomedicine. 2023

[6]
Engineering HO Self-Supplying Platform for Xdynamic Therapies via Ru-Cu Peroxide Nanocarrier: Tumor Microenvironment-Mediated Synergistic Therapy.

ACS Appl Mater Interfaces. 2024-5-15

[7]
Optimized strategies of ROS-based nanodynamic therapies for tumor theranostics.

Biomaterials. 2023-12

[8]
ROS-mediated Therapeutics Combined with Metal-based Porphyrin Nanoparticles and their Applications in Tumor Treatment.

Curr Med Chem. 2025

[9]
Current advances in nanozyme-based nanodynamic therapies for cancer.

Acta Biomater. 2025-1-1

[10]
Metal-polyphenol self-assembled nanodots for NIR-II fluorescence imaging-guided chemodynamic/photodynamic therapy-amplified ferroptosis.

Acta Biomater. 2024-9-1

引用本文的文献

[1]
Photodynamic therapy and nanomedicine: current knowledge, limitations, and applications in oral squamous cell carcinoma: a narrative review.

Front Oncol. 2025-6-16

[2]
Current Research in Drug-Free Cancer Therapies.

Bioengineering (Basel). 2025-3-26

[3]
Immunomodulating platelet-mimicking nanoparticles for AIE-based enhanced photodynamic immunotherapy against lung cancer.

Mater Today Bio. 2025-3-18

本文引用的文献

[1]
Deciphering the hydrodynamics of lipid-coated microbubble sonoluminescence for sonodynamic therapy.

Ultrason Sonochem. 2024-12

[2]
Focused shock waves and inertial cavitation release tumor-associated antigens from renal cell carcinoma.

Ultrason Sonochem. 2024-12

[3]
Mitochondria-Targeting AIEgens as Pyroptosis Inducers for Boosting Type-I Photodynamic Therapy of Tongue Squamous Cell Carcinoma.

ACS Nano. 2024-9-13

[4]
Injectable Mechanophore Nanoparticles for Deep-Tissue Mechanochemical Dynamic Therapy.

ACS Nano. 2024-9-9

[5]
Synthetic lethality of combined ULK1 defection and p53 restoration induce pyroptosis by directly upregulating GSDME transcription and cleavage activation through ROS/NLRP3 signaling.

J Exp Clin Cancer Res. 2024-8-30

[6]
A Nanoencapsulated Ir(III)-Phthalocyanine Conjugate as a Promising Photodynamic Therapy Anticancer Agent.

ACS Appl Mater Interfaces. 2024-7-31

[7]
MOF-Derived Nanoparticles with Enhanced Acoustical Performance for Efficient Mechano-Sonodynamic Therapy.

Adv Mater. 2024-8

[8]
Glutathione-Responsive Polymersome with Continuous Glutathione Depletion for Enhanced Photodynamic Therapy and Hypoxia-Activated Chemotherapy.

ACS Macro Lett. 2024-5-21

[9]
Bacteria-driven nanosonosensitizer delivery system for enhanced breast cancer treatment through sonodynamic therapy-induced immunogenic cell death.

J Nanobiotechnology. 2024-4-12

[10]
GSH-responsive degradable nanodrug for glucose metabolism intervention and induction of ferroptosis to enhance magnetothermal anti-tumor therapy.

J Nanobiotechnology. 2024-4-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索