Suppr超能文献

建筑能耗模型校准方法的实证与比较验证

Empirical and Comparative Validation for a Building Energy Model Calibration Methodology.

作者信息

Gutiérrez González Vicente, Ramos Ruiz Germán, Fernández Bandera Carlos

机构信息

School of Architecture, University of Navarra, Pamplona 31009, Spain.

出版信息

Sensors (Basel). 2020 Sep 3;20(17):5003. doi: 10.3390/s20175003.

Abstract

The digital world is spreading to all sectors of the economy, and Industry 4.0, with the digital twin, is a reality in the building sector. Energy reduction and decarbonization in buildings are urgently required. Models are the base for prediction and preparedness for uncertainty. Building energy models have been a growing field for a long time. This paper proposes a novel calibration methodology for a building energy model based on two pillars: simplicity, because there is an important reduction in the number of parameters (four) to be adjusted, and cost-effectiveness, because the methodology minimizes the number of sensors provided to perform the process by 47.5%. The new methodology was validated empirically and comparatively based on a previous work carried out in Annex 58 of the International Energy Agency (IEA). The use of a tested and structured experiment adds value to the results obtained.

摘要

数字世界正在渗透到经济的各个领域,而拥有数字孪生的工业4.0在建筑领域已成为现实。建筑领域迫切需要实现能源减排和脱碳。模型是预测和应对不确定性的基础。长期以来,建筑能源模型一直是一个不断发展的领域。本文基于两个支柱提出了一种新颖的建筑能源模型校准方法:一是简单性,因为需要调整的参数数量(四个)大幅减少;二是成本效益,因为该方法将用于执行该过程的传感器数量减少了47.5%。基于国际能源署(IEA)附件58中先前开展的一项工作,对新方法进行了实证验证和比较验证。采用经过测试的结构化实验为所获得的结果增添了价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5bc/7506729/0c4146bc84a1/sensors-20-05003-g002.jpg

相似文献

1
Empirical and Comparative Validation for a Building Energy Model Calibration Methodology.
Sensors (Basel). 2020 Sep 3;20(17):5003. doi: 10.3390/s20175003.
3
Reinforcement Learning-Based BEMS Architecture for Energy Usage Optimization.
Sensors (Basel). 2020 Aug 31;20(17):4918. doi: 10.3390/s20174918.
4
Occupant-based energy upgrades selection for Canadian residential buildings based on field energy data and calibrated simulations.
J Clean Prod. 2020 Oct 20;271:122430. doi: 10.1016/j.jclepro.2020.122430. Epub 2020 Jun 16.
5
Probabilistic Load Forecasting Optimization for Building Energy Models via Day Characterization.
Sensors (Basel). 2021 May 10;21(9):3299. doi: 10.3390/s21093299.
6
Estimating city-level energy consumption of residential buildings: A life-cycle dynamic simulation model.
J Environ Manage. 2019 Jun 15;240:451-462. doi: 10.1016/j.jenvman.2019.03.130. Epub 2019 Apr 5.
7
Impact of a low thermal conductive lightweight concrete in building: Energy and fuel performance evaluation for different climate region.
J Environ Manage. 2020 Aug 15;268:110732. doi: 10.1016/j.jenvman.2020.110732. Epub 2020 May 15.
8
Development of a Surface Temperature Sensor to Enhance Energy Efficiency Actions in Buildings.
Sensors (Basel). 2018 Sep 12;18(9):3046. doi: 10.3390/s18093046.
9
A sustainable mathematical model for design of net zero energy buildings.
Heliyon. 2020 Jan 15;6(1):e03190. doi: 10.1016/j.heliyon.2020.e03190. eCollection 2020 Jan.
10

引用本文的文献

1
Probabilistic Load Forecasting Optimization for Building Energy Models via Day Characterization.
Sensors (Basel). 2021 May 10;21(9):3299. doi: 10.3390/s21093299.
2
Probabilistic Load Forecasting for Building Energy Models.
Sensors (Basel). 2020 Nov 15;20(22):6525. doi: 10.3390/s20226525.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验