Payne Gregory F, Raghavan Srinivasa R
Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Building, College Park, MD 20742, USA.
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
Soft Matter. 2007 Apr 24;3(5):521-527. doi: 10.1039/b613872a.
Traditional microfabrication has tremendous capabilities for imparting order to hard materials (e.g., silicon wafers) over a range of length scales. However, conventional microfabrication does not provide the means to assemble pre-formed nano-scale components into higher-ordered structures. We believe the aminopolysaccharide chitosan possesses a unique set of properties that enable it to serve as a length-scale interconnect for the hierarchical assembly of nano-scale components into macro-scale systems. The primary amines (atomic length scale) of the glucosamine repeating units (molecular length scale) provide sites to connect pre-formed or self-assembled nano-scale components to the polysaccharide backbone (macromolecular length scale). Connections to the backbone can be formed by exploiting the electrostatic, nucleophilic, or metal-binding capabilities of the glucosamine residues. Chitosan's film-forming properties provide the means for assembly at micron-to-centimetre lengths (supramolecular length scales). In addition to interconnecting length scales, chitosan's capabilities may also be uniquely-suited as a soft component-hard device interconnect. In particular, chitosan's film formation can be induced under mild aqueous conditions in response to localized electrical signals that can be imposed from microfabricated surfaces. This capability allows chitosan to assemble soft nano-scale components (e.g., proteins, vesicles, and virus particles) at specific electrode addresses on chips and in microfluidic devices. Thus, we envision the potential that chitosan may emerge as an integral material for soft matter (bio)fabrication.
传统的微加工技术在一系列长度尺度上对硬质材料(如硅片)进行有序加工方面具有巨大能力。然而,传统微加工技术无法将预制的纳米级组件组装成更高阶的结构。我们认为氨基多糖壳聚糖具有独特的性质组合,使其能够作为一种长度尺度的互连材料,用于将纳米级组件分层组装成宏观系统。葡糖胺重复单元(分子长度尺度)的伯胺(原子长度尺度)提供了将预制或自组装的纳米级组件连接到多糖主链(大分子长度尺度)的位点。与主链的连接可以通过利用葡糖胺残基的静电、亲核或金属结合能力来形成。壳聚糖的成膜特性为在微米到厘米长度(超分子长度尺度)上进行组装提供了手段。除了连接不同长度尺度外,壳聚糖的性能还可能特别适合作为软组件与硬器件的互连材料。特别是,壳聚糖可以在温和的水性条件下,响应从微加工表面施加的局部电信号而诱导成膜。这种能力使壳聚糖能够在芯片和微流控设备上的特定电极位置组装软纳米级组件(如蛋白质、囊泡和病毒颗粒)。因此,我们设想壳聚糖有可能成为软物质(生物)制造的一种不可或缺的材料。