Suppr超能文献

电化学生产功能材料:基于氯胺的抗菌薄膜用于感染性伤口治疗。

Electrofabrication of functional materials: Chloramine-based antimicrobial film for infectious wound treatment.

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.

Key Laboratory for Ultrafine Materials of Ministry of Education, The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.

出版信息

Acta Biomater. 2018 Jun;73:190-203. doi: 10.1016/j.actbio.2018.02.028. Epub 2018 Mar 2.

Abstract

UNLABELLED

Electrical signals can be imposed with exquisite spatiotemporal control and provide exciting opportunities to create structure and confer function. Here, we report the use of electrical signals to program the fabrication of a chloramine wound dressing with high antimicrobial activity. This method involves two electrofabrication steps: (i) a cathodic electrodeposition of an aminopolysaccharide chitosan triggered by a localized region of high pH; and (ii) an anodic chlorination of the deposited film in the presence of chloride. This electrofabrication process is completed within several minutes and the chlorinated chitosan can be peeled from the electrode to yield a free-standing film. The presence of active NCl species in this electrofabricated film was confirmed with chlorination occurring first on the amine groups and then on the amide groups when large anodic charges were used. Electrofabrication is quantitatively controllable as the cathodic input controls film growth during deposition and the anodic input controls film chlorination. In vitro studies demonstrate that the chlorinated chitosan film has antimicrobial activities that depend on the chlorination degree. In vivo studies with a MRSA infected wound healing model indicate that the chlorinated chitosan film inhibited bacterial growth, induced less inflammation, developed reorganized epithelial and dermis structures, and thus promoted wound healing compared to a bare wound or wound treated with unmodified chitosan. These results demonstrate the fabrication of advanced functional materials (i.e., antimicrobial wound dressings) using controllable electrical signals to both organize structure through non-covalent interactions (i.e., induce chitosan's reversible self-assembly) and to initiate function-conferring covalent modifications (i.e., generate chloramine bonds). Potentially, electrofabrication may provide a simple, low cost and sustainable alternative for materials fabrication.

STATEMENT OF SIGNIFICANCE

We believe this work is novel because this is the first report (to our knowledge) that electronic signals enable the fabrication of advanced antimicrobial dressings with controlled structure and biological performance. We believe this work is significant because electrofabrication enables rapid, controllable and sustainable materials construction with reduced adverse environmental impacts while generating high performance materials for healthcare applications. More specifically, we report an electrofbrication of antimicrobial film that can promote wound healing.

摘要

未加标签

电信号可以进行精确的时空控制,并提供令人兴奋的机会来构建结构并赋予功能。在这里,我们报告使用电信号来编程制造具有高抗菌活性的氯胺伤口敷料。这种方法涉及两个电纺步骤:(i)在高 pH 局部区域触发的氨基多糖壳聚糖的阴极电沉积;和(ii)存在氯的情况下沉积膜的阳极氯化。这个电纺过程在几分钟内完成,氯化的壳聚糖可以从电极上剥离下来得到一个独立的薄膜。在这个电纺膜中存在活性 NCl 物种,这是通过在使用大阳极电荷时首先在胺基上发生氯化,然后在酰胺基上发生氯化来证实的。电纺是定量可控的,因为阴极输入控制沉积过程中的膜生长,而阳极输入控制膜氯化。体外研究表明,氯化壳聚糖膜具有依赖于氯化度的抗菌活性。在 MRSA 感染伤口愈合模型的体内研究表明,与裸伤口或未经修饰的壳聚糖处理的伤口相比,氯化壳聚糖膜抑制细菌生长,引起的炎症较少,形成重组的上皮和真皮结构,从而促进伤口愈合。这些结果表明,使用可控的电信号制造先进的功能材料(即抗菌伤口敷料),既可以通过非共价相互作用组织结构(即诱导壳聚糖的可逆自组装),又可以引发赋予功能的共价修饰(即生成氯胺键)。潜在地,电纺可能为材料制造提供一种简单、低成本和可持续的替代方案。

意义声明

我们认为这项工作是新颖的,因为这是第一个报告(据我们所知)电子信号可以制造具有受控结构和生物学性能的先进抗菌敷料。我们认为这项工作是重要的,因为电纺可以在减少对环境不利影响的同时,快速、可控和可持续地构建材料,并为医疗保健应用生成高性能材料。更具体地说,我们报告了一种电纺抗菌膜,可以促进伤口愈合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验