Brain Repair and Imaging in Neural Systems, Department of Experimental Medical Science, Lund University, Lund, Sweden.
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA.
Mol Neurodegener. 2020 Sep 8;15(1):49. doi: 10.1186/s13024-020-00380-w.
α-Synuclein (aSyn) aggregation is thought to play a central role in neurodegenerative disorders termed synucleinopathies, including Parkinson's disease (PD). Mouse aSyn contains a threonine residue at position 53 that mimics the human familial PD substitution A53T, yet in contrast to A53T patients, mice show no evidence of aSyn neuropathology even after aging. Here, we studied the neurotoxicity of human A53T, mouse aSyn, and various human-mouse chimeras in cellular and in vivo models, as well as their biochemical properties relevant to aSyn pathobiology.
Primary midbrain cultures transduced with aSyn-encoding adenoviruses were analyzed immunocytochemically to determine relative dopaminergic neuron viability. Brain sections prepared from rats injected intranigrally with aSyn-encoding adeno-associated viruses were analyzed immunohistochemically to determine nigral dopaminergic neuron viability and striatal dopaminergic terminal density. Recombinant aSyn variants were characterized in terms of fibrillization rates by measuring thioflavin T fluorescence, fibril morphologies via electron microscopy and atomic force microscopy, and protein-lipid interactions by monitoring membrane-induced aSyn aggregation and aSyn-mediated vesicle disruption. Statistical tests consisted of ANOVA followed by Tukey's multiple comparisons post hoc test and the Kruskal-Wallis test followed by a Dunn's multiple comparisons test or a two-tailed Mann-Whitney test.
Mouse aSyn was less neurotoxic than human aSyn A53T in cell culture and in rat midbrain, and data obtained for the chimeric variants indicated that the human-to-mouse substitutions D121G and N122S were at least partially responsible for this decrease in neurotoxicity. Human aSyn A53T and a chimeric variant with the human residues D and N at positions 121 and 122 (respectively) showed a greater propensity to undergo membrane-induced aggregation and to elicit vesicle disruption. Differences in neurotoxicity among the human, mouse, and chimeric aSyn variants correlated weakly with differences in fibrillization rate or fibril morphology.
Mouse aSyn is less neurotoxic than the human A53T variant as a result of inhibitory effects of two C-terminal amino acid substitutions on membrane-induced aSyn aggregation and aSyn-mediated vesicle permeabilization. Our findings highlight the importance of membrane-induced self-assembly in aSyn neurotoxicity and suggest that inhibiting this process by targeting the C-terminal domain could slow neurodegeneration in PD and other synucleinopathy disorders.
α-突触核蛋白(α-Syn)聚集被认为在神经退行性疾病中起核心作用,这些疾病被称为突触核蛋白病,包括帕金森病(PD)。小鼠 α-Syn 在 53 位含有一个苏氨酸残基,模拟了人类家族性 PD 突变 A53T,然而与 A53T 患者不同的是,即使在衰老后,小鼠也没有表现出 α-Syn 神经病理学的证据。在这里,我们研究了细胞和体内模型中人类 A53T、小鼠 α-Syn 和各种人鼠嵌合体的神经毒性,以及与 α-Syn 病理生物学相关的生化特性。
用编码 α-Syn 的腺病毒转导的原代中脑培养物进行免疫细胞化学分析,以确定多巴胺能神经元相对存活率。用编码 α-Syn 的腺相关病毒脑内注射大鼠的脑切片进行免疫组织化学分析,以确定黑质多巴胺能神经元存活率和纹状体多巴胺能末梢密度。通过测量硫黄素 T 荧光来表征纤维形成率、通过电子显微镜和原子力显微镜观察纤维形态以及通过监测膜诱导的 α-Syn 聚集和 α-Syn 介导的囊泡破坏来研究蛋白质-脂质相互作用,来对重组 α-Syn 变体进行表征。统计检验包括方差分析,然后是 Tukey 的多重比较后检验,以及 Kruskal-Wallis 检验,然后是 Dunn 的多重比较检验或双尾 Mann-Whitney 检验。
与人类 A53T 相比,小鼠 α-Syn 在细胞培养和大鼠中脑的神经毒性更小,并且对嵌合体变体获得的数据表明,人类到小鼠的取代 D121G 和 N122S 至少部分负责这种神经毒性的降低。人类 A53T 和一种具有人类残基 D 和 N 的嵌合体变体在 121 和 122 位(分别)显示出更大的倾向进行膜诱导聚集并引发囊泡破坏。人类、小鼠和嵌合体 α-Syn 变体之间的神经毒性差异与纤维形成率或纤维形态的差异弱相关。
由于两个 C 末端氨基酸取代对膜诱导的 α-Syn 聚集和 α-Syn 介导的囊泡通透性的抑制作用,小鼠 α-Syn 的神经毒性小于人类 A53T 变体。我们的发现强调了膜诱导的自组装在 α-Syn 神经毒性中的重要性,并表明通过靶向 C 末端结构域抑制这个过程可能会减缓 PD 和其他突触核蛋白病中的神经退行性变。