Luan Binquan, Kuroda Marcelo A
Computational Biological Center, IBM Thomas J. Watson Research, Yorktown Heights, New York 10598, United States.
Department of Physics, Auburn University, Auburn, Alabama 36849, United States.
ACS Nano. 2020 Oct 27;14(10):13137-13145. doi: 10.1021/acsnano.0c04743. Epub 2020 Sep 17.
Recent advances in nanotechnology have facilitated fabrication of various solid state nanopores as a versatile alternative to biological nanopores; however, effective transport of a single-stranded DNA (ssDNA) molecule through solid state nanopores for sequencing has remained a challenge. In particular, the nonspecific interactions between the ssDNA and the engineered nanopore surface are known to impose difficulties on both transport and interrogation. Here, we show that a two-dimensional (2D) nanopore patterned on an in-plane heterostructure comprising both graphene and hexagonal boron nitride (hBN) can be utilized to transport the ssDNA electrophoretically. Energetically, a ssDNA molecule prefers to stay on the hBN domain than the graphene one since the former has a stronger van der Waals attraction with the ssDNA, as demonstrated in both classic molecular dynamics (MD) simulations and density functional theory (DFT) based calculations, which leads to the confinement of the ssDNA in the 2D nanopore. Therefore, this nanopore enables the manipulation of the conformation of a highly flexible ssDNA molecule on a flat 2D heterostructure surface, making it possible for sensing ssDNA bases using the high resolution atomic force microscopy (AFM) or scanning tunneling microscopy (STM) in the third dimension (perpendicular to the 2D surface).
纳米技术的最新进展推动了各种固态纳米孔的制造,作为生物纳米孔的一种通用替代方案;然而,单链DNA(ssDNA)分子通过固态纳米孔进行测序的有效传输仍然是一个挑战。特别是,已知ssDNA与工程化纳米孔表面之间的非特异性相互作用给传输和检测都带来了困难。在这里,我们表明,在由石墨烯和六方氮化硼(hBN)组成的面内异质结构上图案化的二维(2D)纳米孔可用于电泳传输ssDNA。从能量角度来看,ssDNA分子更倾向于停留在hBN区域而不是石墨烯区域,因为前者与ssDNA具有更强的范德华吸引力,这在经典分子动力学(MD)模拟和基于密度泛函理论(DFT)的计算中都得到了证明,这导致ssDNA被限制在二维纳米孔中。因此,这种纳米孔能够在平坦的二维异质结构表面上操纵高度灵活的ssDNA分子的构象,使得在第三维度(垂直于二维表面)使用高分辨率原子力显微镜(AFM)或扫描隧道显微镜(STM)传感ssDNA碱基成为可能。