Zhao Yufeng, Yao Yong, Xu Xiaochuan, Xu Ke, Yang Yanfu, Tian Jiajun
Appl Opt. 2020 Aug 20;59(24):7396-7407. doi: 10.1364/AO.399033.
The orbital angular moment (OAM) of light has been proved to be useful in plenty of applications. By transmitting the OAM of the focused light field to a particle, it will be orbited around the optical axis. Therefore, it is necessary to study the OAM distribution of the focused light field used to manipulate the particles. In this application, the widely used paraxial approximation is no longer sufficient due to the tightly focused beam. We employ the higher-order Poincaré sphere to represent the Laguerre-Gaussian (LG) beams with arbitrary polarization. Then the Rayleigh-Sommerfeld integral method and the -parameter method are used to derive the analytical expression of the light field on the focal plane. Based on this, the OAM density expression of the tightly focused LG beam is derived. In the numerical simulation, we study and analyze the unique intensity distributions and OAM distributions of tightly focused linear polarized, radial polarized, and circular polarized LG beams. The results could be leveraged to further explore the applications of the polarized vortex beam.
光的轨道角动量(OAM)已被证明在许多应用中非常有用。通过将聚焦光场的OAM传递给粒子,粒子将绕光轴做轨道运动。因此,有必要研究用于操纵粒子的聚焦光场的OAM分布。在这种应用中,由于光束的紧聚焦,广泛使用的傍轴近似不再适用。我们采用高阶庞加莱球来表示任意偏振的拉盖尔-高斯(LG)光束。然后利用瑞利-索末菲积分法和θ-参数法推导焦平面上光场的解析表达式。在此基础上,推导了紧聚焦LG光束的OAM密度表达式。在数值模拟中,我们研究并分析了紧聚焦线偏振、径向偏振和圆偏振LG光束独特的强度分布和OAM分布。这些结果可用于进一步探索偏振涡旋光束的应用。