Ye Jing, Wu Hongde, Wu Lishan, Long Jianjun, Zhang Yuling, Chen Gong, Wang Chunbao, Luo Xun, Hou Qinghua, Xu Yi
Shenzhen MileBot Robotics Co., Ltd., Shenzhen, China.
Shenzhen Institute of Geriatrics, Shenzhen, China.
Front Neurorobot. 2020 Jul 17;14:38. doi: 10.3389/fnbot.2020.00038. eCollection 2020.
Accurate gait event detection is necessary for control strategies of gait rehabilitation robots. However, due to personal diversity between individuals, it is a challenge for robots to detect a gait event at various stride frequencies. This paper proposes a novel method for gait event detection of a gait rehabilitation robot using a single inertial sensor mounted on the thigh. A self-adaptive threshold for detecting heel strike is obtained in real time via a linear regression model. Observable thresholds for toe off detection are constant at various stride frequencies. Experiments are conducted based on 20 healthy subjects and six hemiplegic patients wearing a gait rehabilitation robot and walking at various kinds of stride frequencies. The experimental results show that the proposed method can detect heel strike and toe off gait events within an average 2% gait cycle temporal errors and never miss two-gait event detection. Compared to the conventional thresholding method, this work presents a simple and robust application for gait event detection in healthy and hemiplegic subjects by one inertial sensor. The linear regression model can be applicable to different subjects walking at various stride frequencies.
准确的步态事件检测对于步态康复机器人的控制策略至关重要。然而,由于个体之间存在个体差异,机器人在不同步幅频率下检测步态事件是一项挑战。本文提出了一种使用安装在大腿上的单个惯性传感器对步态康复机器人进行步态事件检测的新方法。通过线性回归模型实时获得用于检测足跟触地的自适应阈值。用于检测足趾离地的可观测阈值在各种步幅频率下是恒定的。基于20名健康受试者和6名偏瘫患者穿着步态康复机器人并以各种步幅频率行走进行了实验。实验结果表明,所提出的方法能够在平均2%步态周期时间误差内检测到足跟触地和足趾离地步态事件,且从未错过双步态事件检测。与传统的阈值方法相比,这项工作通过一个惯性传感器为健康和偏瘫受试者的步态事件检测提供了一种简单而稳健的应用。线性回归模型可适用于以不同步幅频率行走的不同受试者。