Watanabe M, Watanabe T, Ishii Y, Matsuba H, Kimura S, Fujita T, Kominami E, Katunuma N, Uchiyama Y
Department of Anatomy, University of Tsukuba, Ibaraki-Ken, Japan.
J Histochem Cytochem. 1988 Jul;36(7):783-91. doi: 10.1177/36.7.3290333.
To determine the characteristics of lysosomes in rat islet endocrine cells, we examined the precise localization of cathepsins B, H, and L and their specific inhibitors, cystatins alpha and beta, using immunocytochemical techniques. By use of serial semi-thin sections, we detected immunoreactivity for cathepsin B in insulin-, glucagon-, somatostatin-, and pancreatic polypeptide-positive (PP) cells. Strong immunoreactivity for cathepsin H was seen in A-cells and weak immunoreactivity in PP cells, but none in others. Immunodeposits for cystatin beta were demonstrated in B-cells. Brief dipping of thin sections in 1% sodium methoxide before the following immunocytochemical reaction enhanced specific deposits of immunogold particles on the target organelles. Use of a double-immunostaining technique showed co-localization of insulin with cystatin beta in many secretory granules. This suggests that cystatin beta may regulate converting enzymes participating in the maturation process of insulin. By use of an immunogold technique, heterogeneous localization of cathepsins B and H in lysosomes was also found among islet cells at the light microscopic level. This may be due to the difference in peptides degraded in lysosomes among the cells.