Suppr超能文献

应急恢复行动的多资源调度与路由选择

Multi-resource scheduling and routing for emergency recovery operations.

作者信息

Bodaghi Behrooz, Shahparvari Shahrooz, Fadaki Masih, Lau Kwok Hung, Ekambaram Palaneeswaran, Chhetri Prem

机构信息

Faculty of Science, Engineering, and Technology, Swinburne University of Technology, Hawthorn, Australia.

School of Accounting, Information systems, and Supply chain, RMIT University, Melbourne, VIC, Australia.

出版信息

Int J Disaster Risk Reduct. 2020 Nov;50:101780. doi: 10.1016/j.ijdrr.2020.101780. Epub 2020 Aug 29.

Abstract

Efficient delivery of multiple resources for emergency recovery during disasters is a matter of life and death. Nevertheless, most studies in this field only handle situations involving single resource. This paper formulates the Multi-Resource Scheduling and Routing Problem (MRSRP) for emergency relief and develops a solution framework to effectively deliver expendable and non-expendable resources in Emergency Recovery Operations. Six methods, namely, Greedy, Augmented Greedy, k-Node Crossover, Scheduling. Monte Carlo, and Clustering, are developed and benchmarked against the exact method (for small instances) and the genetic algorithm (for large instances). Results reveal that all six heuristics are valid and generate near or actual optimal solutions for small instances. With respect to large instances, the developed methods can generate near-optimal solutions within an acceptable computational time frame. The Monte Carlo algorithm, however, emerges as the most effective method. Findings of comprehensive comparative analysis suggest that the proposed MRSRP model and the Monte Carlo method can serve as a useful tool for decision-makers to better deploy resources during emergency recovery operations.

摘要

在灾难期间高效地调配多种资源以进行应急恢复是生死攸关的大事。然而,该领域的大多数研究仅处理涉及单一资源的情况。本文针对应急救援制定了多资源调度与路由问题(MRSRP),并开发了一个解决方案框架,以在应急恢复行动中有效地交付消耗性和非消耗性资源。开发了六种方法,即贪心算法、增强贪心算法、k 节点交叉算法、调度算法、蒙特卡罗算法和聚类算法,并与精确算法(用于小实例)和遗传算法(用于大实例)进行了基准测试。结果表明,所有六种启发式算法都是有效的,并且对于小实例能够生成接近最优或实际最优的解决方案。对于大实例,所开发的方法能够在可接受的计算时间范围内生成接近最优的解决方案。然而,蒙特卡罗算法是最有效的方法。综合比较分析的结果表明,所提出的 MRSRP 模型和蒙特卡罗方法可以作为决策者在应急恢复行动中更好地部署资源的有用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/468a/7456293/b0fddb41331b/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验