Suppr超能文献

聚 3,4-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)的微加工和 3D 打印导电水凝胶及其在生物电子学中的应用。

Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics.

机构信息

Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.

Wroclaw University of Science and Technology, Faculty of Chemistry, Department of Process Engineering and Technology of Polymer and Carbon Materials, 4/6 Norwida Street, 50-373, Wroclaw, Poland.

出版信息

Biosens Bioelectron. 2020 Nov 15;168:112568. doi: 10.1016/j.bios.2020.112568. Epub 2020 Aug 29.

Abstract

Biofabrication techniques such as microlithography and 3-D bioprinting have emerged in recent years as technologies capable of rendering complex, biocompatible constructs for biosensors, tissue and regenerative engineering and bioelectronics. While instruments and processes have been the subject of immense advancement, multifunctional bioinks have received less attention. A novel photocrosslinkable, hybrid bioactive and inherently conductive bioink formed from poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) nanomaterials within poly(2-hydroxyethyl methacrylate-co-polyethyleneglycol methacrylate) p(HEMA-co-EGMA) was used to render complex hydrogel constructs through microlithographic fabrication and 3-D printing. Constructs were directly compared through established metrics of acuity and fidelity, using side-by-side comparison of microarray grids, triangles incorporating angles 15-90°, and a multi-ink hydrogel disk array. Compositional variation from 0.01 to 1.00 wt% PEDOT:PSS produced hydrogels of varying and tunable electrical and electrochemical properties, while maintaining similar rheological properties (up to 0.50 wt% PEDOT:PSS). Furthermore, hydrogel membrane resistances extracted from equivalent circuit modeling of electrical impedance spectroscopy data varied only according to the included wt% of PEDOT:PSS and were agnostic of fabrication method. An in-silico variable frequency active low-pass filter was developed using a microlithographically fabricated Individually Addressable Microband Electrode (IAME) as the filtering capacitor, wherein 3-D printed lines of varying wt% of PEDOT:PSS hydrogels were shown to alter the cutoff frequency of the analog filter, indicating a potential use as tunable 3-D printed organic electronic analog filtering elements for biosensors. Bioinks of different PEDOT:PSS (0.0, 0.1, and 0.5 wt%) manufactured into hydrogel disks using the two methods were shown to yield similarly cytocompatible substrates for attachment and differentiation of PC-12 neural progenitor cells.

摘要

近年来,微光刻和 3D 生物打印等生物制造技术已经出现,它们能够为生物传感器、组织和再生工程以及生物电子学制造复杂的、生物相容性的结构。虽然仪器和工艺一直是巨大进步的主题,但多功能生物墨水受到的关注较少。一种新型的光交联、混合生物活性和固有导电性生物墨水,由聚(3,4-乙二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)纳米材料在聚(2-羟乙基甲基丙烯酸酯-co-聚乙二醇甲基丙烯酸酯)p(HEMA-co-EGMA)中形成,用于通过微光刻制造和 3D 打印来制造复杂的水凝胶结构。通过使用微阵列网格、包含 15-90°角的三角形以及多墨水水凝胶盘阵列的并排比较,直接通过敏锐度和保真度的既定指标对结构进行了比较。PEDOT:PSS 的浓度从 0.01 到 1.00wt%变化,产生了具有不同和可调谐的电学和电化学性质的水凝胶,同时保持相似的流变学性质(高达 0.50wt% PEDOT:PSS)。此外,从等效电路模型的电阻抗谱数据中提取的水凝胶膜电阻仅根据包含的 PEDOT:PSSwt%而变化,与制造方法无关。使用微光刻制造的可单独寻址微带电极(IAME)作为滤波电容器,开发了一个基于仿真的可变频率有源低通滤波器,其中具有不同 PEDOT:PSS 浓度的 3D 打印线被证明可以改变模拟滤波器的截止频率,表明其可能作为用于生物传感器的可调 3D 打印有机电子模拟滤波元件。使用两种方法将不同 PEDOT:PSS(0.0、0.1 和 0.5wt%)制成水凝胶盘的生物墨水显示出对 PC-12 神经前体细胞附着和分化具有相似细胞相容性的基底。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验