Latte Bovio Claudia, Campione Paola, Wu Han-Yan, Li Qifan, De La Fuente Durán Ana, Salleo Alberto, Fabiano Simone, Messina Grazia Maria Lucia, Santoro Francesca
Tissue Electronics, Istituto Italiano di Tecnologia, Naples, 80125, Italy.
Dipartimento di Chimica, Materiali e Produzione Industriale, Università di Napoli Federico II, Naples, 80125, Italy.
Small. 2025 Feb;21(5):e2404451. doi: 10.1002/smll.202404451. Epub 2024 Dec 23.
The integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties. However, n-type conductive polymers remain underexplored, primarily due to their limited long-term stability. In this study, it is demonstrated that the conductive polymer poly(benzimidazobenzophenanthroline) (BBL), commonly used in organic electronic devices, can effectively support neuronal cell viability and spreading, both as a bare cell culture material and when coated with exracellular matrix proteins. This work provides a preliminary validation of BBL's potential for future integration into bioelectronic devices and in biointerfacing.
将有机电子材料与生物系统相结合以监测、与生理过程交互并调节生理过程,是生物电子学领域的一个关键领域。这一进展的核心是细胞芯片耦合的发展,其中材料工程在增强生物界面能力方面起着关键作用。导电聚合物因其良好的生物物理和化学性质,在细胞界面应用中已被证明特别有用。然而,n型导电聚合物仍未得到充分研究,主要是由于其长期稳定性有限。在本研究中,证明了常用于有机电子器件的导电聚合物聚(苯并咪唑并苯并菲咯啉)(BBL),无论是作为裸细胞培养材料还是涂覆细胞外基质蛋白时,都能有效支持神经元细胞的活力和铺展。这项工作为BBL未来集成到生物电子器件和生物界面中的潜力提供了初步验证。