Zhu Wenguo, Xu Huanqi, Pan Jintao, Zhang Shuang, Zheng Huadan, Zhong Yongchun, Yu Jianhui, Chen Zhe
Opt Express. 2020 Aug 31;28(18):25869-25878. doi: 10.1364/OE.399071.
A novel terahertz (THz) sensing scheme is proposed based on the photonic spin Hall effect (PSHE). By illumining a paraxial Gaussian THz beam onto a black phosphorus (BP)-based Tamm structure, the reflected beam will undergo in-plane spin splitting, i.e., the centroids of two opposite spin components separate spatially. Due to Tamm plasmon resonance, one of the spin components is very sensitive to the refractive index changes of the analyte layer sandwiched by monolayer BP and distributed Bragg reflector. The sensitivity of the spin-dependent shift can be up to 2804 mm/RIU with a refractive index resolution of ∼10 RIU. The sensitivity and dynamic sensing region can be flexibly tuned by the BP rotation angle, thickness of analyte layer, or operation frequency. Therefore, the proposed PSHE-based THz sensing provides a new avenue for the development of high-performance THz sensors; thus, we may find applications in chemical sensing and biosensing.
基于光子自旋霍尔效应(PSHE)提出了一种新型太赫兹(THz)传感方案。通过将傍轴高斯太赫兹光束照射到基于黑磷(BP)的塔姆结构上,反射光束将发生面内自旋分裂,即两个相反自旋分量的质心在空间上分离。由于塔姆等离子体共振,其中一个自旋分量对夹在单层BP和分布布拉格反射器之间的分析物层的折射率变化非常敏感。自旋相关位移的灵敏度可达2804 mm/RIU,折射率分辨率约为10 RIU。灵敏度和动态传感区域可通过BP旋转角度、分析物层厚度或工作频率灵活调整。因此,所提出的基于PSHE的太赫兹传感为高性能太赫兹传感器的发展提供了一条新途径;因此,我们可能会在化学传感和生物传感中找到应用。