Suppr超能文献

实验确定性修正量子位丢失。

Experimental deterministic correction of qubit loss.

机构信息

Institut für Experimentalphysik, Universität Innsbruck, Innsbruck, Austria.

Dipartimento di Fisica e Astronomia dell'Università di Bologna, Bologna, Italy.

出版信息

Nature. 2020 Sep;585(7824):207-210. doi: 10.1038/s41586-020-2667-0. Epub 2020 Sep 9.

Abstract

The successful operation of quantum computers relies on protecting qubits from decoherence and noise, which-if uncorrected-will lead to erroneous results. Because these errors accumulate during an algorithm, correcting them is a key requirement for large-scale and fault-tolerant quantum information processors. Besides computational errors, which can be addressed by quantum error correction, the carrier of the information can also be completely lost or the information can leak out of the computational space. It is expected that such loss errors will occur at rates that are comparable to those of computational errors. Here we experimentally implement a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code in a trapped-ion quantum processor. The key technique used for this correction is a quantum non-demolition measurement performed via an ancillary qubit, which acts as a minimally invasive probe that detects absent qubits while imparting the smallest quantum mechanically possible disturbance to the remaining qubits. Upon detecting qubit loss, a recovery procedure is triggered in real time that maps the logical information onto a new encoding on the remaining qubits. Although the current demonstration is performed in a trapped-ion quantum processor, the protocol is applicable to other quantum computing architectures and error correcting codes, including leading two- and three-dimensional topological codes. These deterministic methods provide a complete toolbox for the correction of qubit loss that, together with techniques that mitigate computational errors, constitute the building blocks of complete and scalable quantum error correction.

摘要

量子计算机的成功运行依赖于保护量子位免受退相干和噪声的干扰,否则这些干扰将导致错误的结果。由于这些错误在算法过程中会累积,如果不加以纠正,它们将成为大规模容错量子信息处理器的关键要求。除了可以通过量子纠错来纠正的计算错误之外,信息的载体也可能完全丢失,或者信息可能会泄露到计算空间之外。预计这种损耗错误的发生率将与计算错误的发生率相当。在这里,我们在离子阱量子处理器上的拓扑表面代码的最小实例上实验实现了完整的量子位损耗检测和校正周期。这种校正所使用的关键技术是通过辅助量子位进行的量子非破坏性测量,该辅助量子位作为一种微创探针,可以在对其余量子位施加最小量子力学干扰的情况下检测缺失的量子位。在检测到量子位丢失后,实时触发恢复程序,将逻辑信息映射到剩余量子位上的新编码上。虽然当前的演示是在离子阱量子处理器上进行的,但该协议适用于其他量子计算体系结构和纠错码,包括领先的二维和三维拓扑码。这些确定性方法为校正量子位损耗提供了完整的工具箱,与减轻计算错误的技术一起,构成了完整和可扩展的量子纠错的构建块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验