Livingston William P, Blok Machiel S, Flurin Emmanuel, Dressel Justin, Jordan Andrew N, Siddiqi Irfan
Department of Physics, University of California, Berkeley, CA, 94720, USA.
Center for Quantum Coherent Science, University of California, Berkeley, CA, 94720, USA.
Nat Commun. 2022 Apr 28;13(1):2307. doi: 10.1038/s41467-022-29906-0.
The storage and processing of quantum information are susceptible to external noise, resulting in computational errors. A powerful method to suppress these effects is quantum error correction. Typically, quantum error correction is executed in discrete rounds, using entangling gates and projective measurement on ancillary qubits to complete each round of error correction. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancillary qubits, and their associated errors. An FPGA controller actively corrects errors as they are detected, achieving an average bit-flip detection efficiency of up to 91%. Furthermore, the protocol increases the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.
量子信息的存储和处理容易受到外部噪声的影响,从而导致计算错误。一种抑制这些影响的有效方法是量子纠错。通常,量子纠错以离散轮次执行,利用纠缠门和对辅助量子比特的投影测量来完成每一轮纠错。在此,我们使用直接奇偶校验测量以资源高效的方式实现连续量子比特翻转纠错码,消除了纠缠门、辅助量子比特及其相关误差。一个现场可编程门阵列(FPGA)控制器在检测到错误时主动纠错,实现了高达91%的平均比特翻转检测效率。此外,该协议使受保护逻辑量子比特的弛豫时间比组成它的裸量子比特的弛豫时间延长了2.7倍。我们的结果展示了多量子比特架构中资源高效的稳定器测量,并证明了连续纠错码如何能够应对实现容错系统中的挑战。