Lee John Y, Gallo Ryan A, Ledon Paul J, Tao Wensi, Tse David T, Pelaez Daniel, Wester Sara T
Dr. Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, Florida, USA.
Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, USA.
Transl Vis Sci Technol. 2020 Aug 25;9(9):39. doi: 10.1167/tvst.9.9.39. eCollection 2020 Aug.
To evaluate the efficacy of Library of Integrated Network-based Cellular Signatures (LINCS) perturbagen prediction software to identify small molecules that revert pathologic gene signature and alter disease phenotype in orbital adipose stem cells (OASCs) derived from patients with thyroid-associated orbitopathy (TAO).
Differentially expressed genes identified via RNA sequencing were inputted into LINCS L1000 Characteristic Direction Signature Search Engine (L1000CDS) to predict candidate small molecules to reverse pathologic gene expression. TAO OASC cell lines were treated in vitro with six identified small molecules (Torin-2, PX12, withaferin A, isoliquiritigenin, mitoxantrone, and MLN8054), and expression of key adipogenic and differentially expressed genes was measured with quantitative polymerase chain reaction after 7 days of treatment. OASCs were differentiated into adipocytes, treated for 15 days, and stained with Oil Red O (OD 490 nm) to evaluate adipogenic changes.
The expression of key differentially expressed genes (IRX1, HOXB2, S100B, and KCNA4) and adipogenic genes (peroxisome proliferator activated receptor-γ, FABP4) was significantly decreased in TAO OASCs after treatment ( < .05). In treated TAO adipocytes ( = 3), all six tested small molecules yielded significant decrease ( < .05) in Oil Red O staining. In treated non-TAO adipocytes ( = 3), only three of the drugs yielded a significant decrease in Oil Red O staining.
Combining disease expression signatures with LINCS small molecule prediction software can identify promising preclinical drug candidates for TAO.
These findings may offer insight into future potential therapeutic options for TAO and demonstrate a streamlined model to predict drug candidates for other diseases.
评估基于综合网络的细胞特征库(LINCS)干扰剂预测软件识别可逆转病理基因特征并改变甲状腺相关眼病(TAO)患者来源的眼眶脂肪干细胞(OASC)疾病表型的小分子的功效。
将通过RNA测序鉴定的差异表达基因输入LINCS L1000特征方向特征搜索引擎(L1000CDS),以预测可逆转病理基因表达的候选小分子。TAO OASC细胞系在体外用六种鉴定出的小分子(托林-2、PX12、非洲防己碱、异甘草素、米托蒽醌和MLN8054)处理,处理7天后用定量聚合酶链反应测量关键脂肪生成和差异表达基因的表达。将OASC分化为脂肪细胞,处理15天,并用油红O(OD 490 nm)染色以评估脂肪生成变化。
处理后TAO OASC中关键差异表达基因(IRX1、HOXB2、S100B和KCNA4)和脂肪生成基因(过氧化物酶体增殖物激活受体-γ、脂肪酸结合蛋白4)的表达显著降低(P<0.05)。在处理后的TAO脂肪细胞(n = 3)中,所有六种测试小分子的油红O染色均显著降低(P<0.05)。在处理后的非TAO脂肪细胞(n = 3)中,只有三种药物的油红O染色显著降低。
将疾病表达特征与LINCS小分子预测软件相结合,可以识别出有前景的TAO临床前候选药物。
这些发现可能为TAO未来的潜在治疗选择提供见解,并展示一种简化模型来预测其他疾病的候选药物。