Suppr超能文献

去势抵抗性前列腺癌药物重新定位候选药物的筛选

Screening of Drug Repositioning Candidates for Castration Resistant Prostate Cancer.

作者信息

Kim In-Wha, Kim Jae Hyun, Oh Jung Mi

机构信息

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul, South Korea.

出版信息

Front Oncol. 2019 Jul 23;9:661. doi: 10.3389/fonc.2019.00661. eCollection 2019.

Abstract

Most prostate cancers (PCs) initially respond to androgen deprivation therapy (ADT), but eventually many PC patients develop castration resistant PC (CRPC). Currently, available drugs that have been approved for the treatment of CRPC patients are limited. Computational drug repositioning methods using public databases represent a promising and efficient tool for discovering new uses for existing drugs. The purpose of the present study is to predict drug candidates that can treat CRPC using a computational method that integrates publicly available gene expression data of tumors from CRPC patients, drug-induced gene expression data and drug response activity data. Gene expression data from tumoral and normal or benign prostate tissue samples in CRPC patients were downloaded from the Gene Expression Omnibus (GEO) and differentially expressed genes (DEGs) in CRPC were determined with a meta-signature analysis by a metaDE R package. Additionally, drug activity data were downloaded from the ChEMBL database. Furthermore, the drug-induced gene expression data were downloaded from the LINCS database. The reversal relationship between the CRPC and drug gene expression signatures as the Reverse Gene Expression Scores (RGES) were computed. Drug candidates to treat CRPC were predicted using summarized scores (sRGES). Additionally, synergic effects of drug combinations were predicted with a Target Inhibition interaction using the Minimization and Maximization Averaging (TIMMA) algorithm. The drug candidates of sorafenib, olaparib, elesclomol, tanespimycin, and ponatinib were predicted to be active for the treatment of CRPC. Meanwhile, CRPC-related genes, in this case , and , were identified as having gene expression data that can be reversed by these drugs. Additionally, lenalidomide in combination with pazopanib was predicted to be most potent for CRPC. These findings support the use of a computational reversal gene expression approach to identify new drug and drug combination candidates that can be used to treat CRPC.

摘要

大多数前列腺癌(PC)最初对雄激素剥夺疗法(ADT)有反应,但最终许多PC患者会发展为去势抵抗性前列腺癌(CRPC)。目前,已获批用于治疗CRPC患者的可用药物有限。利用公共数据库的计算药物重新定位方法是发现现有药物新用途的一种有前景且高效的工具。本研究的目的是使用一种计算方法来预测可治疗CRPC的候选药物,该方法整合了CRPC患者肿瘤的公开可用基因表达数据、药物诱导的基因表达数据和药物反应活性数据。从基因表达综合数据库(GEO)下载CRPC患者肿瘤及正常或良性前列腺组织样本的基因表达数据,并通过metaDE R包进行元特征分析来确定CRPC中的差异表达基因(DEG)。此外,从ChEMBL数据库下载药物活性数据。再者,从LINCS数据库下载药物诱导的基因表达数据。计算CRPC与药物基因表达特征之间的反向关系作为反向基因表达分数(RGES)。使用汇总分数(sRGES)预测治疗CRPC的候选药物。此外,使用最小化和最大化平均(TIMMA)算法通过靶点抑制相互作用预测药物组合的协同效应。预测索拉非尼、奥拉帕利、依斯氯醇、坦西莫司和波纳替尼的候选药物对CRPC治疗有效。同时,在这种情况下,CRPC相关基因 和 被鉴定为具有可被这些药物逆转的基因表达数据。此外,预测来那度胺与帕唑帕尼联合使用对CRPC最有效。这些发现支持使用计算反向基因表达方法来识别可用于治疗CRPC的新药物和药物组合候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3553/6664029/5f78c8f0b279/fonc-09-00661-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验