Lossada Francisco, Abbasoglu Tansu, Jiao Dejin, Hoenders Daniel, Walther Andreas
A 3BMS Lab-Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104, Freiburg, Germany.
Macromol Rapid Commun. 2020 Oct;41(20):e2000380. doi: 10.1002/marc.202000380. Epub 2020 Sep 9.
Although research in bioinspired nanocomposites is delivering mechanically superior nanocomposite materials, there remain gaps in understanding some fundamental design principles. This article discusses how the mechanical properties of nacre-mimetic polymer/nanoclay nanocomposites with nanoconfined polymer layers are controlled by the thermo-mechanical polymer properties, that is, glass transition temperature, T using a series of poly(ethylene glycol methyl ether methacrylate-co-N,N-dimethylacrylamide) copolymers with tunable T from 130 to -55 °C. It is elucidated that both the type of copolymer and the nanoconfined polymer layer thickness control energy dissipation and inelastic deformation at high fractions of reinforcements in such bioinspired nanocomposites.
尽管对受生物启发的纳米复合材料的研究正在提供机械性能更优的纳米复合材料,但在理解一些基本设计原则方面仍存在差距。本文讨论了具有纳米受限聚合物层的仿珍珠母聚合物/纳米粘土纳米复合材料的机械性能是如何由热机械聚合物性能(即玻璃化转变温度,T)控制的,使用了一系列玻璃化转变温度从130℃到 -55℃可调的聚(甲基丙烯酸乙二醇甲醚-co-N,N-二甲基丙烯酰胺)共聚物。结果表明,在这种受生物启发的纳米复合材料中,共聚物类型和纳米受限聚合物层厚度都能在高增强剂比例下控制能量耗散和非弹性变形。