Suppr超能文献

管中纤维和管中颗粒分级纳米结构可实现基于MnO的不对称超级电容器的高能量密度。

Fiber-in-tube and particle-in-tube hierarchical nanostructures enable high energy density of MnO-based asymmetric supercapacitors.

作者信息

Nie Guangdi, Luan Yaxue, Kou Zongkui, Jiang Jiangmin, Zhang Zhenyuan, Yang Na, Wang John, Long Yun-Ze

机构信息

Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, PR China; Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.

Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.

出版信息

J Colloid Interface Sci. 2021 Jan 15;582(Pt B):543-551. doi: 10.1016/j.jcis.2020.08.066. Epub 2020 Aug 20.

Abstract

Manganese dioxide (MnO) promises for high-performance asymmetric suprecapacitors, owing to its high theoretical capacity, abundant source, and low cost. However, insufficient practically-achievable capacity and relatively narrow voltage window in alkaline electrolyte are blocking high energy density of MnO-based supercapacitors, where strategies for activating its capacitive performance and widening voltage window are the top priorities to solve the bottleneck problems. Herein, both the fiber-in-tube (NCCM-FiT) and particle-in-tube (NCCM-PiT) nanostructures coulping active NiCoO nanoparticles and conductive carbon with MnO tubes have been purposely fabricated, using the electrospun nickel cobalt oxides/carbon nanofibers (NCO/CNFs) as the self-template agents for enhanced energy density of MnO-based supercapacitors. These hierarchical hollow nanotubes with gradient pores and unique compositions yield excellent capacitive properties, in terms of a competitive capacity (431.7 F g or 431.7 C g, 0.5 A g), which is 2.7 times that of the MnO nanotubes-based electrodes. A maximum energy density of 46.4 Wh kg is obtained at the power density of 400 W kg for the asymmetric device assembled with the NCCM-PiT-based positive electrode and the electrospun CNFs-based negative electrode. The remarkable energy density demonstrated by these hierarchical hollow nanotubes exemplifies a novel and effective design in electrode materials for the asymmetric supercapacitors (ASCs) with superior performance.

摘要

二氧化锰(MnO)因其高理论容量、丰富的来源和低成本,有望用于高性能非对称超级电容器。然而,在碱性电解质中实际可实现的容量不足以及电压窗口相对较窄,阻碍了MnO基超级电容器的高能量密度,其中激活其电容性能和拓宽电压窗口的策略是解决瓶颈问题的首要任务。在此,通过将电纺镍钴氧化物/碳纳米纤维(NCO/CNFs)用作自模板剂,特意制备了将活性NiCoO纳米颗粒和导电碳与MnO管耦合的管中纤维(NCCM-FiT)和管中颗粒(NCCM-PiT)纳米结构,以提高MnO基超级电容器的能量密度。这些具有梯度孔隙和独特组成的分级中空纳米管具有优异的电容性能,在0.5 A g的电流密度下具有431.7 F g或431.7 C g的竞争容量,是基于MnO纳米管电极的2.7倍。对于由基于NCCM-PiT的正极和基于电纺CNFs的负极组装而成的非对称器件,在400 W kg的功率密度下获得了46.4 Wh kg的最大能量密度。这些分级中空纳米管所展示的显著能量密度体现了一种用于具有卓越性能的非对称超级电容器(ASC)电极材料的新颖且有效的设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验