Beijing National Center for Electron Microscopy, School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials (MOE), Tsinghua University , Beijing 100084, P. R. China.
Nano Lett. 2016 Jan 13;16(1):40-7. doi: 10.1021/acs.nanolett.5b02489. Epub 2015 Dec 1.
Although carbonaceous materials possess long cycle stability and high power density, their low-energy density greatly limits their applications. On the contrary, metal oxides are promising pseudocapacitive electrode materials for supercapacitors due to their high-energy density. Nevertheless, poor electrical conductivity of metal oxides constitutes a primary challenge that significantly limits their energy storage capacity. Here, an advanced integrated electrode for high-performance pseudocapacitors has been designed by growing N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 (NCTs/ANPDM) nanocomposite on carbon fabric. The excellent electrical conductivity and well-ordered tunnels of NCTs together with Au nanoparticles of the electrode cause low internal resistance, good ionic contact, and thus enhance redox reactions for high specific capacitance of pure MnO2 in aqueous electrolyte, even at high scan rates. A prototype solid-state thin-film symmetric supercapacitor (SSC) device based on NCTs/ANPDM exhibits large energy density (51 Wh/kg) and superior cycling performance (93% after 5000 cycles). In addition, the asymmetric supercapacitor (ASC) device assembled from NCTs/ANPDM and Fe2O3 nanorods demonstrates ultrafast charge/discharge (10 V/s), which is among the best reported for solid-state thin-film supercapacitors with both electrodes made of metal oxide electroactive materials. Moreover, its superior charge/discharge behavior is comparable to electrical double layer type supercapacitors. The ASC device also shows superior cycling performance (97% after 5000 cycles). The NCTs/ANPDM nanomaterial demonstrates great potential as a power source for energy storage devices.
尽管碳质材料具有长循环稳定性和高功率密度,但它们的低能量密度极大地限制了它们的应用。相反,金属氧化物由于其高能量密度,是超级电容器有前途的赝电容电极材料。然而,金属氧化物的导电性差是一个主要挑战,这极大地限制了它们的储能能力。在这里,通过在碳纤维上生长氮掺杂碳管/掺金纳米粒子的 MnO2(NCTs/ANPDM)纳米复合材料,设计了一种用于高性能赝电容器的先进集成电极。NCTs 的优异导电性和有序隧道以及电极中的金纳米粒子导致低内阻、良好的离子接触,从而增强了在水相电解质中纯 MnO2 的氧化还原反应,即使在高扫描速率下也是如此。基于 NCTs/ANPDM 的原型固态薄膜对称超级电容器(SSC)器件表现出高能量密度(51 Wh/kg)和优异的循环性能(5000 次循环后为 93%)。此外,由 NCTs/ANPDM 和 Fe2O3 纳米棒组装的不对称超级电容器(ASC)器件具有超快的充放电(10 V/s),这在使用金属氧化物活性材料作为两个电极的固态薄膜超级电容器中是最好的之一。此外,其优异的充放电行为可与双电层型超级电容器相媲美。ASC 器件还表现出优异的循环性能(5000 次循环后为 97%)。NCTs/ANPDM 纳米材料作为储能器件的电源具有巨大的潜力。