Zurbano Beatriz N, Tavarone Eugenia, Viacava Belén González, Dokmetjian José C, Cascone Osvaldo, Fingermann Matías
Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, 1282, Buenos Aires, Argentina.
Instituto Nacional de Producción de Biológicos (INPB), ANLIS "Dr. Carlos G. Malbrán", Vélez Sársfield 563, 1282, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina; Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina; Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113, Buenos Aires, Argentina.
Biologicals. 2020 Nov;68:65-73. doi: 10.1016/j.biologicals.2020.08.005. Epub 2020 Sep 8.
Most antivenoms are produced by techniques developed over 50 years ago, with minor modifications. Herein we revise the core of traditional antivenom production processes aiming to optimize key determinants for both consistent antivenom production and the best balance between F(ab')2 quality and recovery. Factorial design analysis revealed that pepsin digestion of 1:3 saline diluted equine plasma for 60 min under pH: 3.20, 37 °C temperature and a 1:15 pepsin to protein ratio conditions, allowed to achieve maximal IgG to F(ab')2 conversion with minimal protein aggregate formation. Further downstream processing by salting out with ammonium sulfate was also studied by factorial analysis. The influence of ammonium sulfate (AS) concentration, temperature (T) and the albumin to total plasma protein ratio plasma (Alb:P) were assayed, revealing that both AS, T and their interaction have a significant impact in F(ab')2 quality and recovery. Taking into account the existing compromise between F(ab')2 monomer recovery and quality two alternative conditions were selected: 14 g/dl AS at 56 °C and, alternatively 16 g/dl AS at 30 °C. Reasonable yields (42%) and product quality (2.5% of aggregates) without significant changes in production cost of traditional methodologies was achieved under the optimized conditions found.
大多数抗蛇毒血清是采用50多年前开发的技术生产的,仅做了微小修改。在此,我们对传统抗蛇毒血清生产工艺的核心进行修订,旨在优化关键决定因素,以实现抗蛇毒血清的稳定生产以及F(ab')2质量与回收率之间的最佳平衡。析因设计分析表明,在pH值为3.20、温度为37℃、胃蛋白酶与蛋白质比例为1:15的条件下,用1:3生理盐水稀释的马血浆进行60分钟的胃蛋白酶消化,可实现最大程度的IgG向F(ab')2转化,同时蛋白质聚集体形成最少。还通过析因分析研究了用硫酸铵盐析进行的进一步下游加工。测定了硫酸铵(AS)浓度、温度(T)以及白蛋白与总血浆蛋白比例(Alb:P)的影响,结果表明AS、T及其相互作用对F(ab')2质量和回收率均有显著影响。考虑到F(ab')2单体回收率与质量之间现有的折衷关系,选择了两个替代条件:56℃下14g/dl的AS,以及30℃下16g/dl的AS。在找到的优化条件下,实现了合理的产量(42%)和产品质量(2.5%的聚集体),而传统方法的生产成本没有显著变化。