Suppr超能文献

解决基于 NGS 的临床诊断中的不对准干扰。

Resolving misalignment interference for NGS-based clinical diagnostics.

机构信息

Fulgent Genetics, Temple City, CA, 91780, USA.

出版信息

Hum Genet. 2021 Mar;140(3):477-492. doi: 10.1007/s00439-020-02216-5. Epub 2020 Sep 11.

Abstract

Next-generation sequencing (NGS) is an incredibly useful tool for genetic disease diagnosis. However, the most commonly used bioinformatics methods for analyzing sequence reads insufficiently discriminate genomic regions with extensive sequence identity, such as gene families and pseudogenes, complicating diagnostics. This problem has been recognized for specific genes, including many involved in human disease, and diagnostic labs must perform additional costly steps to guarantee accurate diagnosis in these cases. Here we report a new data analysis method based on the comparison of read depth between highly homologous regions to identify misalignment. Analyzing six clinically important genes-CYP21A2, GBA, HBA1/2, PMS2, and SMN1-each exhibiting misalignment issues related to homology, we show that our technique can correctly identify potential misalignment events and be used to make appropriate calls. Combined with long-range PCR and/or MLPA orthogonal testing, our clinical laboratory can improve variant calling with minimal additional cost. We propose an accurate and cost-efficient NGS testing procedure that will benefit disease diagnostics, carrier screening, and research-based population studies.

摘要

下一代测序(NGS)是一种非常有用的遗传疾病诊断工具。然而,最常用于分析序列读取的生物信息学方法对于具有广泛序列同一性的基因组区域(如基因家族和假基因)的区分能力不足,这使得诊断复杂化。这个问题已经在特定基因中得到了认识,包括许多与人类疾病相关的基因,诊断实验室必须采取额外的昂贵步骤来保证这些情况下的准确诊断。在这里,我们报告了一种新的数据分析方法,该方法基于高度同源区域之间的读取深度比较来识别错配。我们分析了六个具有临床重要性的基因-CYP21A2、GBA、HBA1/2、PMS2 和 SMN1-每个基因都表现出与同源性相关的错配问题,我们表明我们的技术可以正确识别潜在的错配事件,并用于进行适当的调用。结合长距离 PCR 和/或 MLPA 正交测试,我们的临床实验室可以以最小的额外成本提高变异调用的准确性。我们提出了一种准确且具有成本效益的 NGS 测试程序,将有益于疾病诊断、携带者筛查和基于研究的人群研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验