Du Juan, Li Yahao, Zhong Qifan, Yang Jianhong, Xiao Jin, Chen De, Wang Fangping, Luo Yingtao, Chen Kaibin, Li Wangxing
School of Metallurgy and Environment, Central South University, Changsha, Hunan Province 410083, P. R. China.
Zhengzhou Non-Ferrous Metals Research Institute Co. Ltd of CHALCO, Zhengzhou, Henan Province 450041, P. R. China.
ACS Omega. 2020 Aug 24;5(35):22119-22130. doi: 10.1021/acsomega.0c02151. eCollection 2020 Sep 8.
Nanoscale polyaniline (PANI) is formed on a hierarchical 3D microstructure carbon nanotubes (CNTs)/carbon fiber paper (CFP) substrate a one-step electrochemical polymerization method. The chemical and structural properties of the binder-free PANI/CNTs/CFP electrode are characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The specific capacitance of PANI/CNTs/CFP tested in a symmetric two-electrode system reaches 731.6 mF·cm (1354.7 F·g) at a current density of 1 mA·cm (1.8 A·g). The symmetric supercapacitor device demonstrates excellent cycling performance up to 10,000 cycles with a capacitance retention of 81.4% at a current density of 1 mA·cm (1.8 A·g). The results demonstrate that the binder-free CNTs/CFP composite is a strong backbone for depositing ultrathin PANI layers at a high mass loading. The hierarchical 3D microstructure PANI/CNTs/CFP provides enough space and transporting channels to form an efficient electrode-electrolyte interface for the supercapacitance reaction. The formed nanoscale PANI film coaxially coated on the sidewalls of CNTs enables efficient charge transfer and a shortened diffusion length. Hence, the utilization efficiency and electrochemical performances of PANI are significantly improved. The rational design strategy of a CNT-based binder-free hierarchical 3D microstructure can be used in preparing various advanced energy-storage electrodes for electrochemical energy-storage and conversion systems.
通过一步电化学聚合法,在具有分级结构的三维微观结构碳纳米管(CNTs)/碳纤维纸(CFP)基底上形成了纳米级聚苯胺(PANI)。通过场发射扫描电子显微镜、透射电子显微镜、傅里叶变换红外光谱和拉曼光谱对无粘结剂PANI/CNTs/CFP电极的化学和结构性质进行了表征。在对称双电极系统中测试时,PANI/CNTs/CFP在电流密度为1 mA·cm²(1.8 A·g)时的比电容达到731.6 mF·cm²(1354.7 F·g)。该对称超级电容器器件在电流密度为1 mA·cm²(1.8 A·g)时,展现出高达10000次循环的优异循环性能,电容保持率为81.4%。结果表明,无粘结剂的CNTs/CFP复合材料是用于在高质量负载下沉积超薄PANI层的坚固骨架。分级三维微观结构的PANI/CNTs/CFP提供了足够的空间和传输通道,以形成用于超级电容反应的高效电极-电解质界面。同轴包覆在CNTs侧壁上形成的纳米级PANI薄膜实现了高效的电荷转移并缩短了扩散长度。因此,PANI的利用效率和电化学性能得到了显著提高。基于CNT的无粘结剂分级三维微观结构的合理设计策略可用于制备用于电化学储能和转换系统的各种先进储能电极。