Suppr超能文献

实施高维倾向评分原则以改善英国电子健康记录中的混杂因素调整。

Implementing high-dimensional propensity score principles to improve confounder adjustment in UK electronic health records.

机构信息

Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK.

Health Data Research UK, London, UK.

出版信息

Pharmacoepidemiol Drug Saf. 2020 Nov;29(11):1373-1381. doi: 10.1002/pds.5121. Epub 2020 Sep 14.

Abstract

PURPOSE

Recent evidence from US claims data suggests use of high-dimensional propensity score (hd-PS) methods improve adjustment for confounding in non-randomised studies of interventions. However, it is unclear how best to apply hd-PS principles outside their original setting, given important differences between claims data and electronic health records (EHRs). We aimed to implement the hd-PS in the setting of United Kingdom (UK) EHRs.

METHODS

We studied the interaction between clopidogrel and proton pump inhibitors (PPIs). Whilst previous observational studies suggested an interaction (with reduced effect of clopidogrel), case-only, genetic and randomised trial approaches showed no interaction, strongly suggesting the original observational findings were subject to confounding. We derived a cohort of clopidogrel users from the UK Clinical Practice Research Datalink linked with the Myocardial Ischaemia National Audit Project. Analyses estimated the hazard ratio (HR) for myocardial infarction (MI) comparing PPI users with non-users using a Cox model adjusting for confounders. To reflect unique characteristics of UK EHRs, we varied the application of hd-PS principles including the level of grouping within coding systems and adapting the assessment of code recurrence. Results were compared with traditional analyses.

RESULTS

Twenty-four thousand four hundred and seventy-one patients took clopidogrel, of whom 9111 were prescribed a PPI. Traditional PS approaches obtained a HR for the association between PPI use and MI of 1.17 (95% CI: 1.00-1.35). Applying hd-PS modifications resulted in estimates closer to the expected null (HR 1.00; 95% CI: 0.78-1.28).

CONCLUSIONS

hd-PS provided improved adjustment for confounding compared with other approaches, suggesting hd-PS can be usefully applied in UK EHRs.

摘要

目的

来自美国索赔数据的新证据表明,在非随机干预研究中,使用高维倾向评分(hd-PS)方法可以更好地调整混杂因素。然而,鉴于索赔数据和电子健康记录(EHR)之间存在重要差异,hd-PS 原则在其原始设置之外的最佳应用方式尚不清楚。我们旨在英国(UK)EHR 环境中实施 hd-PS。

方法

我们研究了氯吡格雷和质子泵抑制剂(PPIs)之间的相互作用。虽然之前的观察性研究表明存在相互作用(氯吡格雷效果降低),但病例对照、遗传和随机试验方法表明没有相互作用,强烈表明最初的观察性发现受到混杂因素的影响。我们从英国临床实践研究数据链接与心肌梗塞国家审计项目链接的 UK Clinical Practice Research Datalink 中提取了氯吡格雷使用者队列。使用 Cox 模型调整混杂因素,比较了使用 PPI 的患者与未使用 PPI 的患者的心肌梗死(MI)的危险比(HR)。为了反映英国 EHR 的独特特征,我们改变了 hd-PS 原则的应用,包括在编码系统内分组的程度以及调整代码重复的评估。结果与传统分析进行了比较。

结果

24471 名患者服用氯吡格雷,其中 9111 名患者开了 PPI。传统 PS 方法得出 PPI 使用与 MI 之间关联的 HR 为 1.17(95%CI:1.00-1.35)。应用 hd-PS 修改后得到的估计值更接近预期的零值(HR 1.00;95%CI:0.78-1.28)。

结论

与其他方法相比,hd-PS 为混杂因素提供了更好的调整,这表明 hd-PS 可在英国 EHR 中得到有效应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验