高维与传统倾向评分在 Coxibs 与减少上消化道并发症的比较有效性研究中的应用。
High-dimensional versus conventional propensity scores in a comparative effectiveness study of coxibs and reduced upper gastrointestinal complications.
机构信息
Department of Clinical Epidemiology, BIPS-Institute for Epidemiology and Prevention Research, Achterstr. 30, 28359 Bremen, Germany.
出版信息
Eur J Clin Pharmacol. 2013 Mar;69(3):549-57. doi: 10.1007/s00228-012-1334-2. Epub 2012 Jul 5.
PURPOSE
High-dimensional propensity score (hd-PS) adjustment has been proposed as a tool to improve control for confounding in pharmacoepidemiological studies using longitudinal claims databases. We investigated whether hd-PS matching improved confounding by indication in a study of Cox-2 inhibitors (coxibs) and traditional nonsteroidal anti-inflammatory drugs (tNSAIDs) and their association with the risk of upper gastrointestinal complications (UGIC).
METHODS
In a cohort study of new users of coxibs and tNSAIDs we compared the effectiveness of these drugs to reduce UGIC using hd-PS matching and conventional propensity score (PS) matching in the German Pharmacoepidemiological Research Database.
RESULTS
The unadjusted rate ratio (RR) of UGIC for coxib users versus tNSAID users was 1.21 [95 % confidence interval (CI) 0.91-1.61]. The conventional PS matched cohort based on 79 investigator-identified covariates resulted in a RR of 0.84 (0.56-1.26). The use of the hd-PS algorithm based on 900 empirical covariates further decreased the RR to 0.62 (0.43-0.91).
CONCLUSIONS
A comparison of hd-PS matching versus conventional PS matching resulted in improved point estimates for studying an intended treatment effect of coxibs versus tNSAIDs when benchmarked against results from randomized controlled trials.
目的
高维倾向评分(hd-PS)调整被提议作为一种工具,以改善使用纵向索赔数据库进行药物流行病学研究的混杂控制。我们研究了在 COX-2 抑制剂(coxibs)和传统非甾体抗炎药(tNSAIDs)及其与上胃肠道并发症(UGIC)风险相关性的研究中,hd-PS 匹配是否改善了指示性混杂。
方法
在一项新使用 coxibs 和 tNSAIDs 的患者队列研究中,我们在德国药物流行病学研究数据库中比较了使用 hd-PS 匹配和传统倾向评分(PS)匹配来评估这些药物对降低 UGIC 的有效性。
结果
coxib 使用者与 tNSAID 使用者发生 UGIC 的未调整率比(RR)为 1.21[95%置信区间(CI)0.91-1.61]。基于 79 个研究者确定的协变量的传统 PS 匹配队列得出的 RR 为 0.84(0.56-1.26)。基于 900 个经验协变量的 hd-PS 算法的使用进一步将 RR 降低至 0.62(0.43-0.91)。
结论
与随机对照试验的结果相比,hd-PS 匹配与传统 PS 匹配的比较导致了 coxibs 与 tNSAIDs 治疗效果的研究中,点估计值的改善。