Department of Physical Medicine and Rehabilitation, Campus Bio-Medico University, Via Álvaro Del Portillo 21, 00128, Rome, Italy.
Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, 79/96 13th Street Charlestown, Boston, MA, 02129, USA.
Brain Stimul. 2020 Nov-Dec;13(6):1566-1576. doi: 10.1016/j.brs.2020.08.016. Epub 2020 Sep 11.
The neurophysiological effects of transcranial direct current stimulation (tDCS) are typically described with respect to changes in cortical excitability, defined by using transcranial magnetic stimulation pulses to determine changes in motor evoked potentials. However, how individual cortical neurons change firing patterns under the influence of tDCS is largely unknown. While the relatively weak currents produced in the brain by tDCS may not be adequate to directly depolarize neuronal membranes, ongoing neuronal activity, combined with subthreshold changes in membrane polarization might be sufficient to alter the threshold for neural firing.
The purpose of this study was to determine the effects of tDCS on neurophysiological activity in motor cortex of freely moving, healthy rats.
In nine healthy, ambulatory rats, each studied under six different stimulation conditions varying in current intensity (maximum current density = 39.8 A/m at 0.4 mA) and polarity (anodal or cathodal), neural activity was analyzed in response to 20 min of tDCS applied through bone screws insulated from the overlying scalp.
After analysis of 480 multi-unit channels that satisfied a rigid set of neurophysiological criteria, we found no systematic effect of tDCS stimulation condition on firing rate or firing pattern. Restricting the analysis to the most responsive units, subtle, but statistically significant changes occurred only in the highest intensity anodal condition.
These results confirm that at current densities typically used in human or animal tDCS studies, observed effects of tDCS are likely to occur via mechanisms other than direct neuronal depolarization.
经颅直流电刺激(tDCS)的神经生理效应通常是通过使用经颅磁刺激脉冲来确定运动诱发电位的变化来描述的,这些变化与皮质兴奋性的变化有关。然而,在 tDCS 的影响下,个体皮质神经元的放电模式如何变化在很大程度上是未知的。虽然 tDCS 在大脑中产生的电流相对较弱,不足以直接去极化神经元膜,但持续的神经元活动,加上膜极化的亚阈变化,可能足以改变神经放电的阈值。
本研究的目的是确定 tDCS 对自由活动的健康大鼠运动皮层神经生理活动的影响。
在 9 只健康的、可活动的大鼠中,在 6 种不同的刺激条件下(电流强度不同,最大电流密度为 0.4 mA 时为 39.8 A/m,极性不同,阳极或阴极),对神经活动进行了分析,持续 20 分钟的 tDCS 通过与头皮隔开的骨螺钉施加。
在对满足严格的神经生理标准的 480 个多单位通道进行分析后,我们没有发现 tDCS 刺激条件对放电率或放电模式有系统的影响。将分析仅限于反应最灵敏的单位,只有在最高强度阳极刺激条件下才会出现微妙但统计学上显著的变化。
这些结果证实,在通常用于人类或动物 tDCS 研究的电流密度下,观察到的 tDCS 效应可能是通过除直接神经元去极化以外的机制发生的。