Suppr超能文献

Surface-tension-induced double emulsion drops via phase separation of polymeric fluid confined in micromolds for capsule templates.

作者信息

Jeong Seong-Geun, Choi Yoon, Nam Jin-Oh, Lee Chang-Soo, Choi Chang-Hyung

机构信息

Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.

Division of Cosmetic Science and Technology, Daegu Haany University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-do 38610, Republic of Korea.

出版信息

J Colloid Interface Sci. 2021 Jan 15;582(Pt B):1012-1020. doi: 10.1016/j.jcis.2020.08.105. Epub 2020 Aug 29.

Abstract

We report a simple and rapid route to produce double emulsion drops by utilizing phase separation of the confined fluid in micromolds and surface-tension-induced drop formation. Specifically, we use cross-shaped micromolds containing prepolymer solution that phase-separates into two compartments upon addition of wetting fluid with separation agent (SA). Subsequently, Laplace pressure-driven flow allows it to form double emulsion drops without use of any surfactants and complex formulations of fluids. The size of each compartment in the emulsion drops can be controlled by tuning composition of the prepolymer solution and separation agent, making the double emulsion drops with varying shell thicknesses. The phase separation creates two compartments with different polarity (i.e. water-soluble and water-insoluble), enabling encapsulation of both hydrophilic and/-or hydrophobic cargoes in desired compartments depending on their solubility. In addition, we produce poly(N-isopropylacrylamide) (pNIPAm) hydrogel microcapsules by solidifying middle phase in the double emulsion drops; thus, hydrophilic large cargo loaded priorly in the core can be encapsulated within hydrogel shells. Finally, by taking advantage of hydrophilic-hydrophobic phase transition behavior of pNIPAm, we achieve encapsulation of small cargo via post-loading approach; the encapsulated cargo can be released by tuning temperature.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验