Department of Information Technology, Ghent University-imec, IDLab, Ghent, B-9052, Belgium.
BMC Bioinformatics. 2020 Sep 14;21(1):402. doi: 10.1186/s12859-020-03740-x.
De Bruijn graphs are key data structures for the analysis of next-generation sequencing data. They efficiently represent the overlap between reads and hence, also the underlying genome sequence. However, sequencing errors and repeated subsequences render the identification of the true underlying sequence difficult. A key step in this process is the inference of the multiplicities of nodes and arcs in the graph. These multiplicities correspond to the number of times each k-mer (resp. k+1-mer) implied by a node (resp. arc) is present in the genomic sequence. Determining multiplicities thus reveals the repeat structure and presence of sequencing errors. Multiplicities of nodes/arcs in the de Bruijn graph are reflected in their coverage, however, coverage variability and coverage biases render their determination ambiguous. Current methods to determine node/arc multiplicities base their decisions solely on the information in nodes and arcs individually, under-utilising the information present in the sequencing data.
To improve the accuracy with which node and arc multiplicities in a de Bruijn graph are inferred, we developed a conditional random field (CRF) model to efficiently combine the coverage information within each node/arc individually with the information of surrounding nodes and arcs. Multiplicities are thus collectively assigned in a more consistent manner.
We demonstrate that the CRF model yields significant improvements in accuracy and a more robust expectation-maximisation parameter estimation. True k-mers can be distinguished from erroneous k-mers with a higher F score than existing methods. A C++11 implementation is available at https://github.com/biointec/detox under the GNU AGPL v3.0 license.
De Bruijn 图是下一代测序数据分析的关键数据结构。它们有效地表示了读取之间的重叠,因此也表示了潜在的基因组序列。然而,测序错误和重复的子序列使得识别真实的潜在序列变得困难。这个过程中的一个关键步骤是推断图中节点和弧的多重性。这些多重性对应于每个节点(弧)所暗示的 k-mer(k+1-mer)在基因组序列中出现的次数。确定多重性可以揭示重复结构和测序错误的存在。节点/弧在 De Bruijn 图中的多重性反映在它们的覆盖度上,然而,覆盖度的变化和覆盖度的偏差使得它们的确定变得模糊。目前,确定节点/弧多重性的方法仅基于节点和弧中各自的信息做出决策,没有充分利用测序数据中存在的信息。
为了提高推断 De Bruijn 图中节点和弧的多重性的准确性,我们开发了一个条件随机场(CRF)模型,该模型能够有效地将每个节点/弧中的覆盖信息与周围节点和弧的信息结合起来。因此,多重性可以以更一致的方式进行集体分配。
我们证明了 CRF 模型在准确性和更稳健的期望最大化参数估计方面都有显著的改进。与现有方法相比,CRF 模型可以更准确地区分真实的 k-mer 和错误的 k-mer,具有更高的 F 分数。我们的 C++11 实现可以在 https://github.com/biointec/detox 上找到,遵循 GNU AGPL v3.0 许可证。